

The Beauty and Joy of Computing

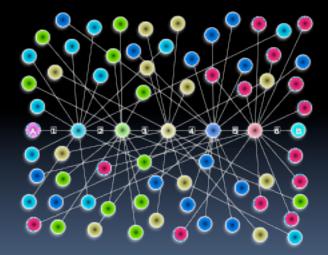
Lecture #21 Limits of Computing

UC Berkeley EECS Sr Lecturer SOE Dan Garcia

You'll have the opportunity for extra credit on your project! After you submit it, you can make a ≤ 5min YouTube video.

4.74 DEGREES OF SEPARATION?

Researchers at Facebook and the University of Milan found that the avg # of "friends" separating any two people in the world was < 6.



www.nytimes.com/2011/11/22/technology/between-you-and-me-4-74-degrees.html

www.eecs.berkeley.edu/Research/Areas/

Computer Science ... A UCB view

CS research areas:

- Artificial Intelligence
- Biosystems & Computational Biology
- Database Management Systems
- Graphics
- Human-Computer Interaction
- Networking
- Programming Systems
- Scientific Computing
- Security
- Systems
- Theory
 - Complexity theory

www.csprinciples.org/docs/APCSPrinciplesBigIdeas20110204.pdf

Let's revisit algorithm complexity

- Problems that...
 - are tractable with efficient solutions in reasonable time
 - are intractable
 - are solvable approximately, not optimally
 - have no known efficient solution
 - are not solvable

Tractable with efficient sols in reas time

- Recall our algorithm complexity lecture, we've got several common orders of growth
 - Constant
 - Logarithmic
 - Linear
 - Quadratic
 - Cubic
 - Exponential

- Order of growth is polynomial in the size of the problem
- E.g.,
 - Searching for an item in a collection
 - Sorting a collection
 - Finding if two numbers in a collection are same
- These problems are called being "in P" (for polynomial)

en.wikipedia.org/wiki/Intractability_(complexity)#Intractability

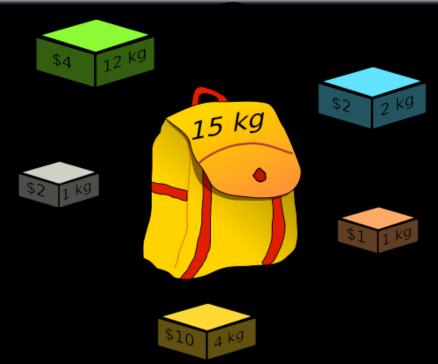
Intractable problems

- Problems that can be solved, but not solved fast enough
- This includes exponential problems
 - E.g., $f(n) = 2^n$
 - as in the image to the right
- This also includes poly-time algorithm with a huge exponent
 E.g, f(n) = n¹⁰

Imagine a program that calculated something important at each of the bottom circles. This tree has height n, but there are 2ⁿ bottom circles!

Only solve for small n

What's the most you can put in your knapsack?



- a) \$10 b) \$15
- b) \$15
 c) \$33
 d) \$36
 e) \$40

Knapsack Problem

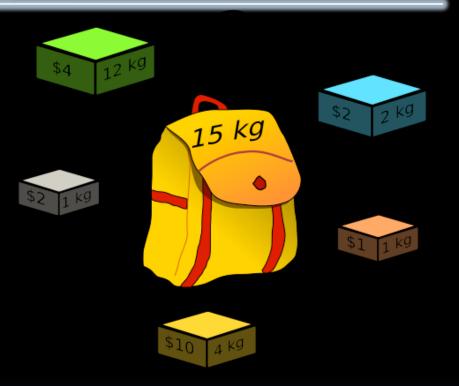
You have a backpack with a weight limit (here **15kg**), which boxes (with weights and values) should be taken to maximize value? (any # of each box is available)

UC Berkeley "The Beauty and Joy of Computing" : Limits of Computability (6)

en.wikipedia.org/wiki/Knapsack_problem

Solvable approximately, not optimally in reas time

- A problem might have an optimal solution that cannot be solved in reasonable time
- BUT if you don't need to know the perfect solution, there might exist algorithms which could give pretty good answers in reasonable time



Knapsack Problem

You have a backpack with a weight limit (here 15kg), which boxes (with weights and values) should be taken to maximize value?

en.wikipedia.org/wiki/P_%3D_NP_problem

15

Have no known efficient solution

- Solving one of them would solve an entire class of them!
 - We can transform one to another, i.e., reduce
 - A problem P is "hard" for a class C if <u>every</u> element of C can be "reduced" to P
- If you're "in NP" and "NP-hard", then you're "NP-complete"

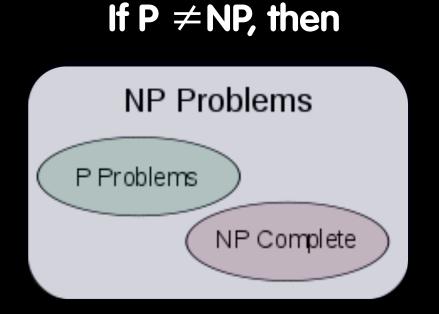
Subset Sum Problem Are there a handful of these numbers (at least 1) that add together to get 0?

- If you guess an answer, can I <u>verify it</u> in polynomial time?
 - Called being "in NP"
 - Non-deterministic (the "guess" part) Polynomial

en.wikipedia.org/wiki/P_%3D_NP_problem

The fundamental question. Is P = NP?

- This is THE major unsolved problem in Computer Science!
 - One of 7 "millennium prizes" w/a \$1M reward
- All it would take is solving ONE problem in the NP-complete set in polynomial time!!
 - Huge ramifications for cryptography, others



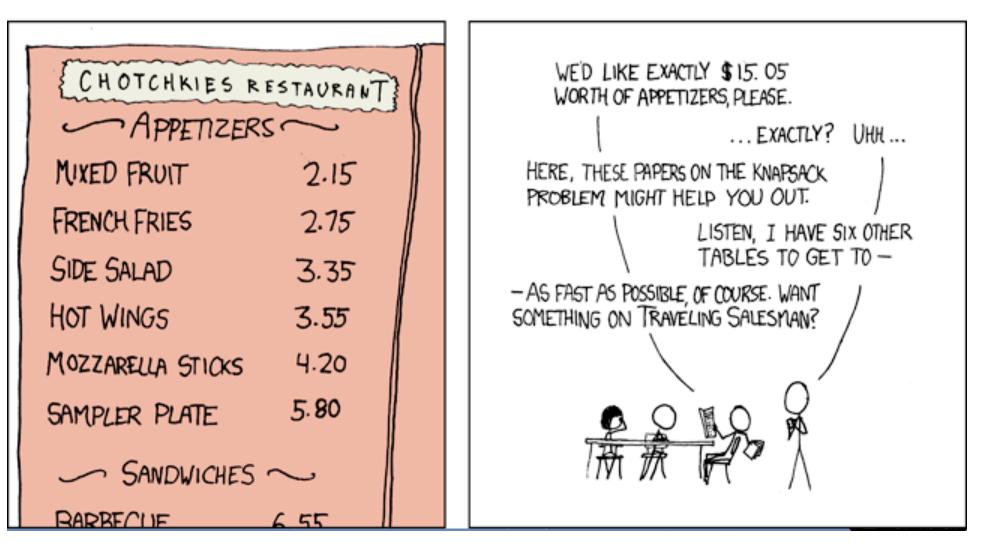
Other NP-Complete

 Traveling salesman who needs most efficient route to visit all cities and return home

UC Berkeley "The Beauty and Joy of Computing" : Limits of Computability (9)

imgs.xkcd.com/comics/np_complete.png

MY HOBBY: EMBEDDING NP-COMPLETE PROBLEMS IN RESTAURANT ORDERS



UC Berkeley "The Beauty and Joy of Computing" : Limits of Computability (11)

www.cgl.uwaterloo.ca/~csk/halt/

Problems NOT solvable

- <u>Decision problems</u> answer YES or NO for an infinite # of inputs
 - E.g., is N prime?
 - E.g., is sentence S grammatically correct?
- An algorithm is a solution if it correctly answers YES/NO in a finite amount of time
- A problem is <u>decidable</u> if it has a solution

June 23, 2012 was his 100th birthday celebration!!

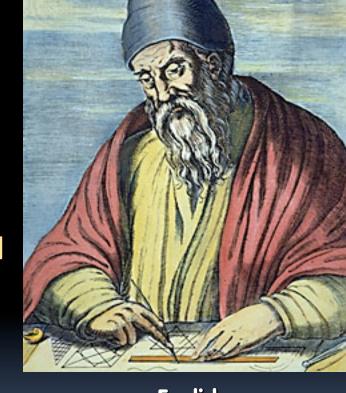


Alan Turing

He asked: "Are all problems decidable?" (people used to believe this was true) **Turing proved it wasn't for CS!**

Review: Proof by Contradiction

- Infinitely Many Primes?
- Assume the contrary, then prove that it's impossible
 - Only a finite set of primes, numbered p₁, p₂, ..., p_n
 - Consider $q = (p_1 \bullet p_2 \bullet \dots \bullet p_n) + 1$
 - Dividing q by p_i has remainder 1
 - q either prime or composite
 - If prime, q is not in the set
 - If composite, since no p_i divides q, there must be another p that does that is not in the set.
 - So there's infinitely many primes



Euclid www.hisschemoller.com/wp-content/uploads/2011/01/euclides.jpg

UC Berkeley "The Beauty and Joy of Computing" : Limits of Computability (13)

Turing's proof : The Halting Problem

- Given a program and some input, will that program eventually stop? (or will it loop)
- Assume we could write it, then let's prove a contradiction
 - I. write Stops on Self?
 - 2. Write Weird

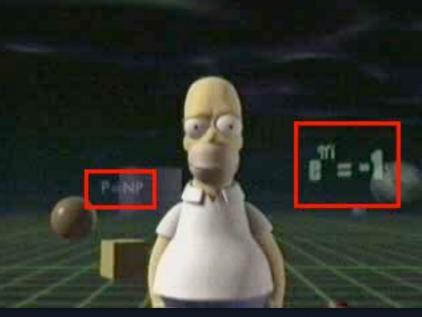
Weird 🚺 Weird

3. Call Weird on itself

UC Berkeley "The Beauty and Joy of Computing" : Limits of Computability (14)

Conclusion

- Complexity theory important part of CS
- If given a hard problem, rather than try to solve it yourself, see if others have tried similar problems
- If you don't need an exact solution, many approximation algorithms help



P=NP question even made its way into popular culture, here shown in the Simpsons 3D episode!

Some not solvable!

