
 
CS10: The Beauty and

Joy of Computing

Lecture #20
Distributed Computing

2012-07-25

GOOGLE SCIENCE FAIR WINNER

Brittany Wenger wrote a neural
net that analyzes diagnostic test
data to detect breast cancer –
and it performs better than
commercial software.

http://bit.ly/NVusUb

UC Berkeley EECS
Summer Instructor

Ben Chun

UC Berkeley CS10 “The Beauty and Joy of Computing” : Distributed Computing (2)

Chun, Summer 2012

  Basics
  Memory
  Network

  Distributed
Computing
  Themes
  Challenges

  Solution! MapReduce
  How it works
  Our implementation

Lecture Overview

UC Berkeley CS10 “The Beauty and Joy of Computing” : Distributed Computing (3)

Chun, Summer 2012

Memory Hierarchy
Processor

Size of memory at each level

Increasing
Distance from

Processor

Slower, Bigger,
Cheaper

Level 1
Level 2

Level n

Level 3
. . .

Higher

Lower

Levels in
memory
hierarchy

UC Berkeley CS10 “The Beauty and Joy of Computing” : Distributed Computing (4)

Chun, Summer 2012

Memory Hierarchy Details
  If level closer to Processor, it is:

  Smaller
  Faster
  More expensive
  Subset of lower levels

  …contains most recently used data

  Lowest Level (usually disk) contains all
available data (does it go beyond the disk?)

  Memory Hierarchy Abstraction presents the
processor with the illusion of a very large &
fast memory

UC Berkeley CS10 “The Beauty and Joy of Computing” : Distributed Computing (5)

Chun, Summer 2012

Networking Basics
  source encodes and destination decodes

content of the message
  switches and routers use the destination in

order to deliver the message, dynamically

Internet

source destination

Network
interface
device

Network
interface
device

UC Berkeley CS10 “The Beauty and Joy of Computing” : Distributed Computing (6)

Chun, Summer 2012

Networking Facts and Benefits
  Networks connect

computers, sub-
networks, and other
networks.
  Networks connect

computers all over the
world (and in space!)

  Computer networks...
  support asynchronous and

distributed communication
  enable new forms of

collaboration

UC Berkeley CS10 “The Beauty and Joy of Computing” : Distributed Computing (7)

Chun, Summer 2012

Performance Needed for Big Problems
  Performance terminology

  the FLOP: FLoating point OPeration
  “flops” = # FLOP/second is the standard metric for computing power

  Example: Global Climate Modeling
  Divide the world into a grid (e.g. 10 km spacing)
  Solve fluid dynamics equations for each point & minute

  Requires about 100 Flops per grid point per minute

  Weather Prediction (7 days in 24 hours):
  56 Gflops

  Climate Prediction (50 years in 30 days):
  4.8 Tflops

  Perspective
  Intel Core i7 3970X Desktop Processor

  ~120 Gflops
  Climate Prediction would take ~3 years

www.epm.ornl.gov/chammp/chammp.html

en.wikipedia.org/wiki/FLOPS

UC Berkeley CS10 “The Beauty and Joy of Computing” : Distributed Computing (8)

Chun, Summer 2012

  Supercomputing – like those listed in top500.org
  Multiple processors “all in one box / room” from one

vendor that often communicate through shared memory
  This is often where you find exotic architectures

  Distributed computing
  Many separate computers (each with independent CPU,

RAM, HD, NIC) that communicate through a network
  Grids (heterogenous computers across Internet)
  Clusters (mostly homogeneous computers all in one room)

  Google uses commodity computers to exploit “knee in curve”
price/performance sweet spot

  It’s about being able to solve “big” problems,
not “small” problems faster
  These problems can be data (mostly) or CPU intensive

What Can We Do? Use Many CPUs!

UC Berkeley CS10 “The Beauty and Joy of Computing” : Distributed Computing (9)

Chun, Summer 2012

Distributed Computing Themes
  Let’s network many disparate machines into

one compute cluster
  These could all be the same (easier) or very

different machines (harder)
  Common themes

  “Dispatcher” gives jobs & collects results
  “Workers” (get, process, return) until done

  Examples
  SETI@Home, BOINC, Render farms
  Google clusters running MapReduce

en.wikipedia.org/wiki/Distributed_computing

UC Berkeley CS10 “The Beauty and Joy of Computing” : Distributed Computing (10)

Chun, Summer 2012

Peer Instruction

1.  Writing & managing SETI@Home is relatively
straightforward; just hand out & gather data

2.  The majority of the world’s computing power
lives in supercomputer centers

 12
a) FF
b) FT
c) TF
d) TT

UC Berkeley CS10 “The Beauty and Joy of Computing” : Distributed Computing (11)

Chun, Summer 2012

1.  The heterogeneity of the machines, handling machines
that fail, falsify data. FALSE

2.  Have you considered how many PCs + game devices
exist? Not even close. FALSE

Peer Instruction Answer

1.  Writing & managing SETI@Home is relatively
straightforward; just hand out & gather data

2.  The majority of the world’s computing power
lives in supercomputer centers

 12
a) FF
b) FT
c) TF
d) TT

UC Berkeley CS10 “The Beauty and Joy of Computing” : Distributed Computing (12)

Chun, Summer 2012

Distributed Computing Challenges
  Communication is fundamental difficulty

  Distributing data, updating shared resource,
communicating results, handling failures

  Machines have separate memories, so need network
  Introduces inefficiencies: overhead, waiting, etc.

  Need to parallelize algorithms, data structures
  Must look at problems from parallel standpoint
  Best for problems whose compute times >> overhead

en.wikipedia.org/wiki/Embarrassingly_parallel

UC Berkeley CS10 “The Beauty and Joy of Computing” : Distributed Computing (13)

Chun, Summer 2012

  Functions as Data
  Higher-Order Functions
  Useful HOFs (you can build your own!)

  map Reporter over List!
  Report a new list, every element E of List becoming
Reporter(E)

  keep items such that Predicate from List!
  Report a new list, keeping only elements E of List if
Predicate(E)!

  combine with Reporter over List!
  Combine all the elements of List with Reporter(E)!
  This is also known as “reduce”!

  Acronym example
  keep map combine

Review

combine with Reporter over List	
a" b"

c"
d"

UC Berkeley CS10 “The Beauty and Joy of Computing” : Distributed Computing (15)

Chun, Summer 2012

  We told you “the beauty of
pure functional programming
is that it’s easily parallelizable”
  Do you see how you could

parallelize this?
  Reducer should be associative

and commutative

  Imagine 10,000 machines
ready to help you compute
anything you could cast as a
MapReduce problem!
  This is the abstraction Google is

famous for authoring
  It hides LOTS of difficulty of

writing parallel code!
  The system takes care of load

balancing, dead machines, etc.

Google’s MapReduce Simplified
en.wikipedia.org/wiki/MapReduce

1 20 3 10

*	 *	 *	 *	

1 400 9 100
+	 +	

401 109
+	

510 Output:

Input:

Note:
only
two
data

types!

UC Berkeley CS10 “The Beauty and Joy of Computing” : Distributed Computing (16)

Chun, Summer 2012

MapReduce Advantages/Disadvantages
  Now it’s easy to program for many CPUs

  Communication management effectively gone
  Fault tolerance, monitoring

  machine failures, suddenly-slow machines, etc are handled

  Can be much easier to design and program!
  Can cascade several (many?) MapReduce tasks

  But … it might restrict solvable problems
  Might be hard to express problem in MapReduce
  Data parallelism is key

  Need to be able to break up a problem by data chunks

  Full MapReduce is closed-source (to Google) C++
  Hadoop is open-source Java-based rewrite

UC Berkeley CS10 “The Beauty and Joy of Computing” : Distributed Computing (17)

Chun, Summer 2012

  Systems and networks
enable and foster
computational problem
solving

  MapReduce is a great
distributed computing
abstraction
  It removes the onus of

worrying about load
balancing, failed machines,
data distribution from the
programmer of the problem

  (and puts it on the authors of
the MapReduce framework)

Summary

