University of California, Berkeley — College of Engineering
Department of Electrical Engineering and Computer Sciences
Fall 2010 Instructors: Dan Garcia and Brian Harvey 2010-12-13

CS10 Paper Final Exam

Last Name

First Name

Student ID Number

cs10- Login First Letter abcdefghijklm

cs10- Login Last Letter abcdefghijklm
nopgqgrstuvwzxyz

The name of your LAB TA (please circle) Jon Luke

Name of the person to your Left

Name of the person to your Right

All my work is my own. | had no prior knowledge of the exam
contents nor will | share the contents with others in CS10 who
have not taken it yet. (please sign)

Instructions

e Question 0 (1 point) involves filling in the front of this page and putting your login
on the top of every sheet of paper.

e This booklet contains 3 pages including this cover page. Put all answers on these pages;
don’t hand in any stray pieces of paper.
Please turn off all pagers, cell phones and beepers. Remove all hats and headphones.
You have 180 minutes to complete this exam. This final is closed book, no computers,
no PDAs, no cell phones, no calculators, but you are allowed three double-sided pages
of notes. There may be partial credit for incomplete answers; write as much of the
solution as you can. When we provide a blank, please fit your answer within the space
provided.

Question |0]1]1213|4(5(6|7(8[9]|10] 11] 12 | Online Total

Points (1|13 |4 |3(3|3|3(4]|6|7|8]9]|1 15 80

Score

Short-answer Questions (this page only)

Question 1 : We're told simulation is the third pillar of science, but these simulations could
be based on bogus models of the world! How do scientists verify the correctness of their
simulations? For example, how do they verify their models of climate change?

Question 2: With regard to HCI, we were in the mainframe era, then the PC era, and some
declare that we are now entering a third era. What characterizes this new era (makes it distinct
from the previous one), and what is an application / service / system that characterizes it?

Question 3: What are the technical requirements for (a) the mapper and (b) the reducer that
allow MapReduce to work so effectively on thousands of machines at once?

Question 4: Cloud computing seems to be the panacea for data- or compute-intensive
problems facing companies today, with very small upfront costs and seemingly infinite capacity
on demand. With so much going for it, why are some companies staying away?

Question 5: What is the fundamental difference between the Al approach taken by chess
programs (e.g., IBM’s Deep Blue) and the Al approach in Dan’s GamesCrafters research group
for games much smaller than chess, such as Connect 4?

Question 6: Name three challenges in artificial intelligence that were once thought to be very
difficult but are now in widespread use.

Question 7: (a) Name a problem that can’t ever be solved by a computer, even in principle.

(b) A problem is considered intractable (in practice) if its order of growth is

Question 8: Are the authors of Blown to Bits optimistic or pessimistic about the future social
implications of computing? Justify your answer with two specific examples.

Login: ¢s10-

Question 9: Enter the (cousin of the) Dragon

We've designed a fractal pattern (implemented by the program below)
whose base case (n=0) simply draws a line length units long (leaving the
sprite at the end of the line pointed in the same direction: that’s important).
The recursive case moves (with pen up) to the ending point, draws two
smaller one-recursion-level-down copies to the “left” (where “left” is
defined relative to the current orientation of the sprite) tilted at 45 degree
angles (i.e., the legs of the isosceles right triangle whose hypotenuse is
the length it just moved) ending up at the starting point, and then moves
back to the ending point. (Reading the code will help you understand this.
) The “L” in the drawing helps us remember which direction “left” is (i.e.,
which direction the next generation will bulge toward). The arrowheads
aren’t part of the drawing (and you don’t have to draw them — we just drew
them to remind you which direction “left” is). If you do draw the
arrowheads, make them small.

a) Draw the n = 2, 3, 4, and « generations for the fractal. For each
complete picture, we always start a drawing by lifting the pen (if it was
down), clearing the screen, and moving the sprite to the “Before” point
facing to the right. After the fractal is done, the sprite is positioned at the
“After” point exactly 1length units away, as shown in the diagram below.

b) How does the number of line segments drawn scale with n? (i.e.,
what'’s its order of growth?)

ﬁ_

fractal length T ‘
U

LAY i

pen down e e

13 Before After

move length steps i i
length

move length steps

|rturn H degrees
lturn & D) degrees
:turn b degresas

move length steps

L 2

n=3

n=4

(oJele;

n=0oo

Question 10: What | need now is a cold compress on my head!
One way to save space with digital data is to compress it. You decide to write a block

to replace all consecutive characters of a word (including just single letters)
with the consecutive number of them and the letter that's repeated. If the input were the

[T] “_n

exclamation “goooo! !” the output would be “1 g 4 o 2 !” (one “g”, four “o”s, and two
You try to write , but it has two bugs (you’ll need to find and fix them).

“yr

s).

compress word

/" compress-helper all but first letter of word i
report
letter of word

N s N
compress-helper word | In-a-row letter

length of =

letter (1) of = letter

compress-helper all but first letter of word ‘

report
In-a-row + letter

ra:mrt
join words

in-a-row letter

" compress-helper all but first letter of word ™

in-a-row | letter

a) Currently, there’s a problem because instead of (222)’ :

Cross off a single buggy line above (and write in the correction) to fix this bug.

b) Let’s say you make the fix in part (a) above. There is one remaining bug. Show the shortest
sequence that triggers the bug (and list the buggy and correct return values).

(Fill in the three blanks below, including the argument to the call to compress below)
Currently, y reports instead of

Then fix it by replacing a single line as you did above (but this time cross it off with a squiggly
line). After fixing both bugs in (a) and (b), should work for all valid input.

c) Now, assume you’ve completely debugged your code above. If ' ,

) . length of * d’
what is the maximum value of ?

Login: ¢s10-

Question 11: Two*H*H*HMany roads diverged in a wood...

We're sure you fondly remember the problem from the midterm. We've
reprinted it (with the answer) on the supplementary handout in case you've forgotten about it.

In computer science, one of the things we like to do is take specific problems and generalize

them. What was specific in it el s Each 53 1ad exactly two paths out of it (if it
wasn't a dead-end), but that's not realistic. Most places have many paths out of them.

Fortunately, the problem statement won't change much. All we do is replace and

with which returns a list of neighbor places, each reached by

going down a particular path out of that place. E.g., using the graph from the midterm version:

+ = length 2 + = lengthe 2 5 + = lengthe 2 2

go-neighbors go-neighbors [go-neighbors [l

...but you could |mag|ne some forests might have only one path out of a place, or a hundred'

As before, calling |s an error if L place ¥ is a dead-end , so

should never return a list with no elements.

Change what is needed from the midterm answer (originally in BYOB but translated below
to paper) to account for the change. Cross off code to delete it, and/or insert code where
appropriate.

1 path-home? (PLACE)

2 if(home? (PLACE))

3 report (true)

4 if (dead-end? (PLACE))

5 report (false)

6 report(path-home? (go-left (PLACE)) or path-home? (go-right (PLACE)))

Question 12: Finding Parking in Berkeley. Get it?

Have you ever tried to park on a side street in a Berkeley residential area? People do such a
poor job parking that they waste most of the street. How many 1-unit-long cars can park on

a street given that people park randomly? Let’s simulate it! We’re going to assume cars don’t
need any extra “breathing room” between them to park and can just “drop” into a tight space.

Luckily, someone else has provide a helper block called , which takes in the amount
of space left, and randomly picks a place for the car to park in that space, reporting the location

of the car's rear end (hence the name). Itis an error to call with less than 1 unit

of free space available. As an example, a call to would return a number from 0 (car
parked in the back of the 10-unit spot) through 9 (car parked at the front of the 10-unit spot) or
any number in-between, like 2.75. All three example reported values are shown below.

_ P B _ @
N

—
3 4 5 6 7 8 9 10

a. Inthe best case, we can get 10 cars to park in a 10-unit space.
How many 1-unit-long cars can park in a 10-unit space in the worst case?

b. Fill in the blanks to complete a block called , which takes in the
amount of space in the street, and simulates random parking to estimate the number of
cars that are able to park on the street before there’s no more space. Hint: Think of what
happens when the first car randomly parks ... it creates two new spaces: front & behind.

’F"-_-‘-.._
|
number-parked (SPACE) L
if () report |_
report () script wariables temp
L2
else set temp |to i
script-variable (TEMP)
set- (TEMP) -to- ()
report ()

Example: @

Midterm “path-home?” Question with Answer

You're lost in the forest. Every in the forest is either a dead-end or has exactly 2 one-way
paths: left and right. Your goal is to find out if there is a way home. We introduce a new data
type called a , but you don’t know (and you don’t need to know) how it is represented; it
could be a string, a number, or a list. You are presented with four new blocks, two predicates
and two reporter blocks (all take a place as an argument):

* returns ibizp if the is your home, EE=p otherwise.

K dead-end? place JENIRR truc QRGN place is a dead-end (i.e., no paths from it).

° follows the left path, returning a new .
° follows the right path, returning a new .
It is an error to or if is a dead-end (because it has no paths!

). There is no way in this forest to follow a sequence of left paths and/or right paths and end up
where you started. l.e., there’s no way to walk in circles. Your home (if one exists) might be at a
dead-end or it might not. You might actually start your search at home.

Write , which uses the four functions above and returns | true 4 if you can

get home following a (possibly zero) number of lefts and rights starting from , and €2
otherwise. Use the technique we described for authoring BYOB code on paper. We've provided
an example forest for you, but your solution needs to be able to work with ANY forest.
Below, we present a table that shows the responses of various blocks when you are at different
places in the sample forest on the lower right.

e send-end?_pice
t | @> | &> | ERROR | ERROR | @
2 D P true 3 ERROR ERROR ¥ Fale
3 falze 3 P true) ERROR ERROR o
4 oD e ERROR ERROR D
s | <oy L raee 3 1 2 L Faie
s | > L raes 3 3 7 i
7| oy L roee 3 5 6 =

—— 1 2 3 4

e e NN

- : (&) home
e IR T i NP
report TRUE if your horme occurs at a dead end,
T - ;

If this place is not horne but iz 2 dead end, it's not the
[_r;urt @ correct path to take, Report FALSE I

“ path-home?
If this place isn't horme and izn't 2 dead

end, then let's search to the left and

zeatch to the right. I either one turnz oot ||
to have rmy horne, report TRUE Otherwise,
report FALSE, Motice that this is recursive,

path-home?

Writing Scratch/BYOB code on paper

You might be asked to write Scratch/BYOB code on exams, so we've developed a technique for
writing it on paper. There are a few key things to notice:
o We write variables in UPPERCASE.
o We change spaces between words in block names to dashes (this makes it much easier
to read).
o Parentheses mark the start and end of a parameter list, and we separate consecutive
parameters by commas
o We use indentation just as Scratch/BYOB does, to help us understand what is “inside”
the if, else, and other Control structures.
o When you want to write a list of things, write them with an
open parenthesis, then the first item, second item, etc 1 _
(separated by spaces) and when you're done, put a 7
closed parenthesis. If any of your items are a sentence, 3
you have to put quotes around the sentence. So, for
example, the following list of three things would be written |+ = length: 3 A
as the equivalent 3-element-list:
m (life liberty "pursuit of happiness").

r)

o Similarly, a nested list just shows up as a nested set of
parenthesis. So the following would be written as : g
m ((Love 5) (Hate 4) (The 10)).
+ = length: 2
o If you want to pass in a function as argument, you have two
options in BYOB: use the grey-border or the more verbose the (
Yblock green block. Here are three new conventions:
m The grey border is written as square brackets: []
m Blanks are written as parenthesis with underscore _in
the middle, but common blocks that are passed in to
HOFs can be simplified by just their name (and not the !
parens and underscores) ‘ m
m Return values are written as ==> value + Elengthe 2 2
o So the following would be written as: - engthi 3 4
m Map[()*(_)]Reduce[(_)+(_) lover((1 20 ~ ¢
3 10)) ==> 510
o or, in the more simplified (and preferred) format:
m Map[*]Reduce[+]Jover((1 20 3 10) ==> 510

+
>

+ = length: 2

&0

(TET k". * i Reduce k". + @ over

list [1[20[3[10 4 »

o If you prefer to use the the ()block green block, it could also be written:

m Map(the((_)*(_))block)Reduce(the((_)+(_))block)over((1
20 3 10)) ==> 510
o or, in the more simplified (again, preferred) format:
m Map (the (*)block)Reduce (the (+)block)over((1 20 3 10)) ==
510

&9

Map ‘the (i block . Reduce

the block Over
" 20 {3 "

Here’'s a sample (and a familiar piece of BYOB code):

downup word

join words

wiord (5L TT. N all but flest letter of word

word

...and here’s how we would write it on an exam using our technique:

downup (WORD)
if length-of (WORD) < 2
report (WORD)
else
report (join-words (WORD, downup (all-but-first-letter-of (WORD)), WORD))

Here’s how you could write the factorial-of block from lab.

factorial-of (NUM)

if NUM = 1
report (1)
else

report (NUM * factorial-of (NUM - 1))

2010Fa CS10 Paper Final Answers

Question 1: Compare with empirical data. In the case of climate simulation, that means
comparing against weather data from the past and seeing if the predicted weather is what

actually happened (e.g., the 1938 hurricane that hit New York).

Question 2: It's an era of mobile, social and ubiquitous computing. Examples? Tweeting /
facebook from a smartphone, exploring a city via foursquare, using Urbanspoon or Yelp to

choose a restaurant, etc.

Question 3: They both must be functions, i.e., whose value is dependent only
on the input and not on some prior state. In addition, the reducer should be
associative and commutative. For the simplified model that we demonstrated
in class, the domain of the reducer must include the range of the mapper AND
the range of the reducer (not required for full credit).

Question 4: “Concern about...”

service availability (trusting your business to someone else)

data lock-in (getting your data out when needed)

security / confidentiality / auditability

data transfer bottlenecks

performance unpredictability

scalable storage (as easy as computation)

bugs in large-scale distributed systems

the ability to scale up quickly

reputation fate sharing. E.g., spam-prevention, unexpected downtime

for subpoenas, etc
. software licensing (current non-open-source software pricing models
don’t scale well)

CoNoOoO~WN -~

—_
o

Question 5: Since chess can’t be solved, chess Als make moves based on
“best guess” evaluations of the board. Dan’s research group focuses on
smaller games (and puzzles) that can be strongly solved, so his system knows
the answer, once and for all, and plays perfectly.

Question 6: Playing chess, voice recognition, natural language translation,
gesture recognition, driving trains, etc.

Question 7: (a) Halting problem. (b) exponential.

Question 8: My answer is “optimistic,” although a case could be made for

|__|
I__I

n=4

[e)e)e]

A

either. Some examples: They say in the last chapter that they think the Internet will eventually
penetrate even currently isolated populations such as North Korea. They think that decreasing
regulation will solve technological problems. They predict that people will come not to mind the

loss of their privacy (although they have mixed feelings about that themselves).

Question 9: (a) The n = 2, 3, 4, and «~ generations for the fractal are above. (b) Exponential.

Question 10: (a) The first reported value changes to “join-words (in-a-row, letter)’
(b) compress (*hi”) returns “1 h 1 h”instead of “1 h 1 i”; the fix involves changing
the last reported value to compress-helper (all-but-first-letter-of (word), 1,
letter (1) of (word))

(c) 399. Alternating letters (e.g., “hihi...”) double in size with spaces“1 h 1 i 1 h 1 i..k

compress-helper word | In-a-row | letter

length of m =M
L g joln words in-a-row | letter

letter m of m = letter

compress-helper all but first letter of word ‘

report

in-a-row + lettar

rlazurt
join words
in-a-row letter

/" compress-helper all but first letter of word S

letter of word

Question 11: Change the value returned in the report block on line 6 to (4 options, depending
on whether they used our MapReduce or not, and grey borders or the () block green block):

Map[path-home?]Reduce[or]Jover(go-neighbors (PLACE))
or
Map[path-home?(_)]Reduce[(_)or(_)]Jover(go-neighbors (PLACE))

Map | path-home?] ;Reduce ; or 4

over go-nelghbors place |

Map (the (path-home?)block) Reduce (the (or)block) over (go-neighbors (PLACE))

or
Map (the (path-home? (_)) block)Reduce (the ((_)or(_))block)over(go-neighbors (PLACE))

Map ~ the path-home?] block Reduce

the Cm block over

go-neighbors place |

combine-with-[or]-items-of(map[path-home?]over(go-neighbors (PLACE)))
or
combine-with-[(_)or(_)]-items-of(map[path-home?(_)]Jover(go-neighbors (PLACE)))

combine with . 4+ ltems of
L —

: * path-home?] |

‘go-neighbors place

combine-with- (the (or)block)-items-of (map (the (path-home?)block)over(go-neighbors (PLACE)))

or
combine-with- (the ((_)or(_))block)-items-of (map (the (path-home? (_))block)over (go-neighbors (PLACE)))

combine with < the 4 9% 3 block

tems of

the 7 path-home?] block

"go-neighbors place |

Question 12:

a. 5. Assuming the biggest space that cannot hold a car is = 0.99, we place the cars from
back to front so that we always leave a 0.99 spot between cars, the worst possible.

1. 0.99-1.99
2. 298-3.98
3. 4.97-5.97
4. 6.96-7.96
5. 8.95-9.95

b. It's a simple divide-and-conquer recursion:

—
number parked space

elsa

script wariables temp
3

set M0 |to [rear space |

temp | +
number parked | space - temp

