CHECKERS SOLVED IN 2007!

A 19-year project led by Prof Jonathan Schaeffer, he used dozens (sometimes hundreds) of computers and AI to prove it is, in perfect play, a ... draw! This means that if two Gods were to play, nobody would ever win!

www.cs.ualberta.ca/~chinook/
Computational Game Theory

- History
- Definitions
 - Game Theory
 - What Games We Mean
 - Win, Lose, Tie, Draw
 - Weakly / Strongly Solving
- Gamesman
 - Dan’s Undergraduate
 R&D Group
 - Demo!!
- Future
Computer Science … A UCB view

- **CS research areas:**
 - Artificial Intelligence
 - Biosystems & Computational Biology
 - Computer Architecture & Engineering
 - Database Management Systems
 - Graphics
 - Human-Computer Interaction
 - Operating Systems & Networking
 - Programming Systems
 - Scientific Computing
 - Security
 - Theory
 - ...

www.eecs.berkeley.edu/Research/Areas/
The Turk (1770)

- A Hoax!
- Built by Wolfgang von Kempelen
 - to impress the Empress
- Could play a strong game of Chess
 - Thanks to Master inside
- Toured Europe
 - Defeated Benjamin Franklin & Napoleon!
- Burned in an 1854 fire
 - Chessboard saved…

The Mechanical Turk (1770)

en.wikipedia.org/wiki/The_Turk
Claude Shannon’s Paper (1950)

- The “Father of Information Theory”
 - Founded the digital computer
 - Defined fundamental limits on compressing/storing data

- Wrote “Programming a Computer for Playing Chess” paper in 1950
 - All chess programs today have his theories at their core
 - His estimate of # of Chess positions called “Shannon #”
Deep Blue vs Garry Kasparov (1997)

- **Kasparov World Champ**
- **1996 Tournament**
 - First game DB wins a classic!
 - But DB loses 3 and draws 2 to lose the 6-game match 4-2
 - In 1997 Deep Blue upgraded, renamed “Deeper Blue”
- **1997 Tournament**
 - GK wins game 1
 - GK resigns game 2
 - even though it was draw!
 - DB & GK draw games 3-5
 - Game 6: 1997-05-11 (May 11th)
 - Kasparov blunders move 7, loses in 19 moves. Loses tournament 3 ½ - 2 ½
 - GK accuses DB of cheating. No rematch.
- **Defining moment in AI history**

Garcia, Fall 2010

UC Berkeley CS10 “The Beauty and Joy of Computing”: Computational Game Theory (6)
What is “Game Theory”?

Combinatorial
- Sprague and Grundy’s 1939 Mathematics and Games
- Board games
- Nim, Domineering, dots and boxes
- Film: *Last Year in Marienbad*
- Complete info, alternating moves
- Goal: Last move

Computational
- R. C. Bell’s 1988 Board and Table Games from many Civilizations
- Board games
- Tic-Tac-Toe, Chess, Connect 4, Othello
- Film: *Searching for Bobby Fischer*
- Complete info, alternating moves
- **Goal: Varies**

Economic
- von Neumann and Morgenstern’s 1944 *Theory of Games and Economic Behavior*
- Matrix games
- Prisoner’s dilemma, auctions
- Film: *A Beautiful Mind* (about John Nash)
- **Incomplete** info, simultaneous moves
- Goal: Maximize payoff

www.cs.berkeley.edu/~ddgarcia/eyawtkagtbwata
What “Board Games” do you mean?

- No chance, such as dice or shuffled cards
- Both players have complete information
 - No hidden information, as in Stratego & Magic
- Two players (Left & Right) usually alternate moves
 - Repeat & skip moves ok
 - Simultaneous moves not ok
- The game can end in a pattern, capture, by the absence of moves, or ...
What’s in a Strong Solution

- **For every position**
 - Assuming alternating play
 - Value … (for player whose turn it is)
 - Winning (\exists losing child)
 - Losing (All children winning)
 - Tieing (\nexists losing child, but \exists tieing child)
 - Drawing (can’t force a win or be forced to lose)
 - Remoteness
 - How long before game ends?

Garcia, Fall 2010
GamesCrafters

- We **strongly solve** abstract strategy games and puzzles
 - 70 games / puzzles in our system
 - Allows perfect play against an opponent
 - Ability to do a post-game analysis
What did you mean “strongly solve”? Wargames (1983)
Weakly Solving A Game (Checkers)

Log of Search Space Size

- Master: main line of play to consider
- Endgame databases (solved)
- Workers: positions to search

Thanks to Jonathan Schaeffer for this slide...
Strong Solving Example: 1, 2, ..., 10

- **Rules (on your turn):**
 - Running total = 0

- **Rules (on your turn):**
 - Add 1 or 2 to running total

- **Goal**
 - Be the FIRST to get to 10

- **Example**
 - Ana: “2 to make it 2”
 - Bob: “1 to make it 3”
 - Ana: “2 to make it 5”
 - Bob: “2 to make it 7” → photo
 - Ana: “1 to make it 8”
 - Bob: “2 to make it 10” I WIN!
Example: Tic-Tac-Toe

- **Rules (on your turn):**
 - Place your X or O in an empty slot on 3x3 board

- **Goal**
 - If your make 3-in-a-row first in any row / column / diag, win
 - Else if board is full with no 3-in-row, tie

- **Misère is tricky**
 - 3-in-row LOSES
 - Pair up and play now, then swap who goes 1st
Tic-Tac-Toe Answer Visualized!

- Recursive Values Visualization Image
- Misère Tic-tac-toe
 - Outer rim is position
 - Inner levels moves
 - Legend
 - Lose
 - Tie
 - Win

Misère Tic-Tac-Toe 2-ply Answer
GamesCrafters

- Undergraduate Computational Game Theory Research Group
- 300 students since 2001
 - We now average 20/semester!
 - They work in teams of 2+
- Most return, take more senior roles (sub-group team leads)
 - Maximization (bottom-up solve)
 - Oh, DeepaBlue (parallelization)
 - GUI (graphical interface work)
 - Retro (GUI refactoring)
 - Architecture (core)
 - New/ice Games (add / refactor)
 - Documentation (games & code)
Connect 4 Solved, Online!

- We’ve just finished a solve of Connect 4!!
- It took 30 Machines x 8 Cores x 1 weeks
- Win for the first player (go in the middle!)
 - 3,5 = tie
 - 1,2,6,7 = lose
Future

- Board games are **exponential** in nature
 - So has been the progress of the speed/capacity of computers!
 - Therefore, every few years, we only get to solve one more “ply”
- One by one, we’re going to solve them and/or beat humans
 - We’ll never solve some
 - E.g., hardest game: Go

Go’s search space ~ 3^{361}