The Beauty and Joy of Computing
Lecture #4: Creativity & Abstraction

LEARN LANGUAGE FREE!
Luis von Ahn’s recent project is Duolingo, which is simultaneously allowing its users to learn a second language free, while also providing a cost-effective way to get documents translated on the web.

PREVENTING ADDICTION!
Researchers in the UK said that some gamers play up to 90 hrs a session, developing a “pathological” addiction. They say game makers need to do more, to get “sensible gaming”

www.duolingo.com
www.bbc.co.uk/news/uk-wales-south-east-wales-23576035
Computing is a Creative Activity

- “Creativity and computing are prominent forces in innovation; the innovations enabled by computing have had and will continue to have far-reaching impact.
- At the same time, computing facilitates exploration and the creation of knowledge.
- This course will emphasize these creative aspects of computing.
Computing enables people...

- ...to translate intention into computational artifacts.
- A computational artifact is created by human conception using software tools.
- Examples of computational artifacts include:
 - digital music, videos, images
 - documents
 - combinations of these. E.g.,
 - infographics
 - presentations
 - web pages.
Computing enables people…

- …to **create** digitally!
- Creating…
 - knowledge
 - tools
 - expressions of ideas
 - solutions to problems.
- **Creating digitally**…
 - requires understanding and using software tools.
 - can be done by…
 - combining and modifying existing artifacts
 - creating new artifacts.
Collaboration is an essential part...

- ...of creating computational artifacts.
- Collaboration facilitates multiple perspectives in developing computational artifacts.
- A computational artifact can reflect collaborative intent.
We can analyze computational artifacts...

- ...for correctness, functionality, and suitability.
- A computational artifact may have weaknesses, mistakes, or errors depending on the type of artifact.
 - For example, music created by a program may not have an error but may simply be hard to listen to.
- The **functionality and suitability** (or appropriateness) of a computational artifact may be related to how it is used or perceived.
Computing extends traditional forms...

- ...of human expression and experience.
- **Computer music** can be created by synthesizing sounds, by sampling existing music, or by recording and manipulating sounds.
- **Creating digital effects**, images, and animations has impacted and **transformed** the movie industry.
- Computing enables creative **exploration of real and synthetic phenomena**.
Programs can be developed...

- ...for creative expression or to satisfy personal curiosity.
- A program developed for creative expression or to satisfy personal curiosity may have visual, audible, or tactile results; or the program may affect a computer or system without such results.
- Programs developed for creative expression or to satisfy personal curiosity may be developed with different standards or methods than programs developed for widespread distribution.
- A program or the results of running a program may be shared with others.
Programs can be developed...

- ...to solve problems, create new knowledge, or help people, organizations, or society.
 - however, the goals may be realized independently of the original purpose of the program.

- **Computer programs** and the results of running the programs have **widespread impact** on individuals, organizations, and society.
Numbers: Positional Notation

- **Number Base B ⇒ B symbols per digit:**
 - Base 10 (Decimal): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
 - Base 2 (Binary): 0, 1 (In binary digits are called “bits”)
 - Base 16 (Hexadecimal): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

- **Number representation:**
 - $d_{31}d_{30} \ldots d_1d_0$ is a 32 digit number
 - Value = $d_{31} \times B^{31} + d_{30} \times B^{30} + \ldots + d_1 \times B^1 + d_0 \times B^0$

- **Binary** 0b11010 = $1 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0$
 = 16 + 8 + 2
 = 26

- **Hex** 0x1A = $1 \times 16^1 + 10 \times 16^0$
 = 16 + 10
 = 26

- **One hex digit (four bits) is a “nibble”. Two (eight bits) is a “byte”** (values 0-255)
- **N bits ⇔ at most 2^N things**
Abstraction (revisited): Numbers

- **Number bases**, including binary and decimal, are used for reasoning about digital data.
- Bits represent binary data using **base two** digits: zero and one.
- **Hexadecimal**, or **base-16**, is often used in reasoning about data such as colors in images.
- Different bases help in reasoning about digital data; digital data is stored in bits.
A combination of abstractions is used to represent digital data.

At the lowest level, all digital data are represented by bits.
- Said another way, bits can represent anything!

Bits are grouped to represent higher-level abstractions including numbers and characters.
- Logical values? 0 → False, 1 → True
- Colors? 00 → Red, 01 → Green, 10 → Blue
- Characters? 00000 → ‘a’, 00001 → ‘b’, …

Higher-level abstractions such as Internet protocol (IP) packets, images, and audio files are comprised of groups of bits that represent different parts of the abstractions.
Binary Sequences to Represent Data

- A finite representation is used to model the infinite mathematical concept of a number.
- In many programming languages the fixed number of bits used to represent integers limits the range of integer values, and mathematical operations can result in overflow or other errors.
- In many programming languages the fixed number of bits used to represent real numbers (represented as “floating-point numbers”) limits their range, and mathematical operations can result in round-off and other errors.
Interpretation of a Binary Sequence...

- **depends on how it is used** (e.g., as instruction, number, text, sound, or image).
- The sequence of bits that represents...
 - ...an instruction may also represent data processed by that instruction.
 - ...a character/letter may also represent a number.
 - ...a color in an image may also represent a sound in an audio file.
SW and HW built on multiple abstractions!

- Software is built using low- and high-level abstractions...
 - such as expressions, statements, data types, functions, and libraries.
 - that represent hardware, such as device drivers and game controllers.

- Hardware is built using low- and high-level abstractions such as chips, memory, and storage.
Binary Data is processed by...

- ...physical layers of computing hardware, including gates, chips, and components.
- A logic gate is a hardware abstraction that models a Boolean function.
- A chip is an abstraction composed of low-level components and circuits that performs a specific function such as memory, CPU, encryption, and more.
- A hardware component can be low level like a transistor or high level like a video card.
...are used in developing software.

- **Low-level programming languages**, such as assembly, are closer to the machine level and provide fewer abstractions for the programmer.

- **High-level programming languages** provide more abstractions for the programmer and are easier for humans to use for reading and writing code.

- Code in a high-level programming language is typically automatically translated into code in a lower-level language to be executed on a computer; this is done by a compiler or an interpreter.
Abstractions everywhere!

- Applications and systems are designed, developed, and analyzed using levels of hardware, software, and conceptual abstractions.
 - E.g., Mobile applications and systems
 - E.g., Web services (both an application and a system)
Summary

- **Creativity**
 - You will create interesting and relevant artifacts with the tools and techniques of computer science.

- **Abstraction**
 - This course will include examples of abstractions used in modeling the world, managing complexity, and communicating with people as well as with machines.
 - You will learn to work with multiple levels of abstraction while engaging with computational problems and systems.