CS3:

Introduction to Symbolic
Programming

Lecture 11:
Tree-recursion
Midterm #2 review

Fall 2006 Nate Titterton
nate@berkeley.edu

Schedule

12 | Nov 13-17 Lecture: Midterm #2
Lab: Start on "Lists"

13 | Nov 20-24 Lecture: Lists, and introduce the big project
Lab: Lists; start on the project

14 |Nov 27-Dec 1 | Lecture: Lists, and ?
Lab: Work on the project

Announcements

* Midterm 2 is coming...
- Next week, 80 minutes (4:10-5:30).

-Room 4 Leconte
- Open book, open notes, etc.
- Check for practice exams and solution on the
course portal and in the reader.
* Midterm 2 review session
- This Sunday, Nov 12, 2-4
- 430 Soda (as last time)

What does midterm #2 cover?

Advanced recursion (accumulating, multiple
arguments, etc.). Including tree-recursion

All of higher order functions

Those "big" homeworks (bowling, compress, and
occurs-in)
Elections miniproject (!)
Reading and programs:
- Change making,
- Difference between dates #3 (HOF),
- tic-tac-toe
SS chapters 14, 15,7, 8,9, 10
Everything before the first Midterm (although, this
won't be the focus of a question)

Programming Style and Grading

* During grading, we are going to start
becoming “more strict” on style issues
- Starting with miniproject #3
- For the big project, style is important

* Why?
- Program maintenance: 6 months later, will you
know what your code does?

- Code “literacy”: sharing code

What issues of style matter?

* Keep procedures small !
* Good names for procedures and parameters

* Adequate comments
- Above and within procedures

* Put tests cases in a comment block
* Indent to aid program comprehension

* Proper use of global variables
* Avoid nesting conditional statements
* Data abstraction

Tree recursion

Advanced recursion

columns (C)
0 1 2 3 4 5

0 1

1 1 1
r
© 2 1 2 1
W
S 3 1 3 3 1
(R) 4 1 4 6 4 1

5 1 5 10 10 5 1

Pascal’'s * How many ways can you choose C things from R choices?
. * Coefficients of the (x+y)*R: look i R
Trlangle 0 e (x+y) ook in row

(define (pascal C R)

(cond
((=C 0) 1) ;base case
((= CR) 1) ;base case
(else ; tree recurse
(+ (pascal C (- R 1))

(pascal (- C 1) (- R 1))
)))

> (pascal 2. 5)
(pascal 2 5)

(+ (pascal 2 4)

(pascal 2 3)
(+ (+] (pascal 2 2) S5 1
(pascal 1 2) pE——
(pascal 1 2) —
(pascal 0 2) = 1

(pascal 1 4)
(pascal 13y

T e T S————————————————————————————————
(+ (pascal 1 2) e

(pascal 0 2) = 1

(pascal 0 3)
= 1

Chips and Drinks

“I have some bags of chips and some drinks.
How many different ways can I finish all of
these snacks if | eat one at a time?

(snack 1 2) = 3
- This includes (chip, drink, drink), (drink, chip,
drink), and (drink, drink, chip).
(snack 2 2) 2> 6
- (ccdd),(cdcd),(cddc)
(dccd),(dcdc),(ddcc)

Midterm like
Problems...

make-bookends (a small problem)

* Write make-bookends, which is used this
way:

((make-bookends 'o) 'hi) = ohio
((make-bookends 'to) 'ron) =2 toronto

(define tom-proc (make-bookends 'tom))
(tom-proc "") = tomtom

Write successive-concatenation

(sc '(a b cde))
= (a ab abc abcd abcde)

(sc '(the big red barn))
=» (the thebig thebigred thebigredbarn)

(define (sc sent)
(accumulate
(lambda ?°?
)

sent))

make-decreasing

* make-decreasing
- Takes a sentence of numbers

- Returns a sentence of numbers, having removed
elements of the input that were not larger than
all numbers to the right of them.

(make-decreasing '(9 6 7 4 6 2 3 1))
=2 (9 7 6 3 1)
(make-decreasing '(3)) = (3)

Write first as a recursion, then as a HOF

CS3:

Introduction to Symbolic
Programming

Lecture 11:
Tree-recursion
Midterm #2 review

Fall 2006 Nate Titterton
nate@berkeley.edu

Schedule

12 |Nov 13-17 Lecture: Midterm #2
Lab: Start on "Lists"

13 | Nov 20-24 Lecture: Lists, and introduce the big project
Lab: Lists; start on the project

14 |Nov 27-Dec 1 | Lecture: Lists, and ?
Lab: Work on the project

Fall 2006 CS3: 2

Announcements

* Midterm 2 is coming...
- Next week, 80 minutes (4:10-5:30).

-Room 4 Leconte
- Open book, open notes, etc.

- Check for practice exams and solution on the
course portal and in the reader.

* Midterm 2 review session
- This Sunday, Nov 12, 2-4
- 430 Soda (as last time)

Fall 2006 CS3: 3

What does midterm #2 cover?

Advanced recursion (accumulating, multiple
arguments, etc.). Including tree-recursion

All of higher order functions

Those "big" homeworks (bowling, compress, and
occurs-in)

Elections miniproject (!)

Reading and programs:

- Change making,

- Difference between dates #3 (HOF),

- tic-tac-toe

SS chapters 14,15, 7,8, 9, 10

Everything before the first Midterm (although, this
won't be the focus of a question)

Fall 2006 CS3: 4

Programming Style and Grading

* During grading, we are going to start
becoming “more strict” on style issues
- Starting with miniproject #3
- For the big project, style is important

« Why?
- Program maintenance: 6 months later, will you
know what your code does?

- Code “literacy”: sharing code

Fall 2006 CS3: 5

What issues of style matter?

Keep procedures small !
Good names for procedures and parameters

Adequate comments
- Above and within procedures

Put tests cases in a comment block
Indent to aid program comprehension

Proper use of global variables

Avoid nesting conditional statements
Data abstraction

Fall 2006 CS3: 6

Tree recursion

Click to add text

Advanced recursion

columns (C)
0 1 2 3 4 5

0 1

1 1 1
r
°© 2 1 2 1
w
s 3 1 3 3 1
(R) 4 1 4 6 4 1

5 1 5 10 10 5 1

Pascal's * How many ways can you choose C things from R choices?
. * Coefficients of the (x+y)*R: look in row R
Trlangle oo icien (x+y) in row

Fall 2006 CS3: 8

(define (pascal C R)

(cond
((=Cc0) 1) ;base case
((=CR) 1) ;base case
(else ;tree recurse
(+ (pascal C (- R 1))

(pascal (- C 1) (- R 1))
)))

Fall 2006 CS3: 9

> (pascal 2 5)

(pascal 2 5)

(+ (pascal 2 4)

(pascal 2 3)
(+ (+ [(pascal 2 2) > 1 I
= 1l |

(pascal 1 2) (+

(pascal 1 3)
[w——————————————
o —————————

(pascal 1 2) (+

(pascal 0 2) = 1

(pascal 1 4)

(pascal 1 3)
(+ (pascal 1 2) Em—
(pascal 02) = 1 I

(pascal 0 3)
2> 1

Fall 2006 CS3: 10

Chips and Drinks

"I have some bags of chips and some drinks.
How many different ways can I finish all of
these snacks if | eat one at a time?

(snack 1 2) 2> 3
- This includes (chip, drink, drink), (drink, chip,
drink), and (drink, drink, chip).
(snack 2 2) 2> 6

- (ccdd),(cdcd),(cddc)
(dccd),(dcdc),(ddcc)

Fall 2006 CS3: 11

» snack

(define (snack chips drinks)

(cond ((and (= 0 chips) (= 0 drinks))
;; both are 0, no more ways...
0)
((or (= 0 chips) (= 0 drinks))

;; one is zero, one isn't, one remaining way
1)
(else (+ (snack (- chips 1) drinks)

(snack chips (- drinks 1))))))

11

Midterm like
Problems...

Click to add text

make-bookends (a small problem)

* Write make-bookends, which is used this
way:

((make-bookends 'o) 'hi) = ohio
((make-bookends 'to) 'ron) =2 toronto

(define tom-proc (make-bookends 'tom))
(tom-proc "") =» tomtom

Fall 2006 CS3: 13

(define (make-bookends wd)

(lambda (inner-wd) (word wd inner-wd wd)))

13

Write successive-concatenation

(sc '(abcde))
= (a ab abc abcd abcde)

(sc ' (the big red barn))
= (the thebig thebigred thebigredbarn)

(define (sc sent)
(accumulate
(lambda ??
)

sent))

Fall 2006 CS3: 14

That inner lambda is tricky. Remember, the accumulate needs to return a

sentence, so the right argument may be a word (the first time it is called) or a
sentence (every other time):

(lambda (wd so-far)
(if (word? so-far)
(se wd (word wd so-far)) ;; 1initial invocation
(se wd ;; other invocations
; ;prepend-each
(every
(lambda (so-far-element)
(word wd sent-so-far-element))

so-far)))

That every inside also requires a lambda, because the function needs to have
one argument, but also use the value of wd.

make-decreasing

make-decreasing
- Takes a sentence of numbers

- Returns a sentence of numbers, having removed
elements of the input that were not larger than
all numbers to the right of them.

(make-decreasing '(9 6 7 4 6 2 3 1))
> (97 6 3 1)
(make-decreasing ' (3)) =2 (3)

Write first as a recursion, then as a HOF

Fall 2006 CS3: 15

;;recursion -- right to left
(define (make-decreasing sent)
(cond ((empty? sent) '())
((empty? (butfirst sent))
(first sent))

((> (last (butlast sent))

(last sent))
(se (make-decreasing (butlast sent))

(last sent)))

(else

(se (make-decreasing (butlast (butlast sent)))
(last sent)))

))
;; recursion -- left to right

(define (make-
(cond ((or

sent

decreasing sent)
(empty? sent)
(empty? (bf sent)))
)

((bigger-than-all? (first sent) (bf sent))

(se

(else

))
(define (bigge
(cond ((emp
((>n
(big
(else

;; HOF
(define (make-
(accumulate
(lambda
(if
(i

(1

sent))

(first sent)
(make-decreasing (bf sent))))
(make-decreasing (bf sent)))

r-than-all? num sent)

ty? sent) #t)

um (first sent))

ger-than-all? num (bf sent)))
#£)))

decreasing sent)

(num sent-so-far)
(word? sent-so-far) ;; first time thru
f (< sent-so-far num)
(se num sent-so-far)
(se sent-so-far))
f (< (first sent-so-far) num)
(se num sent-so-far)
sent-so-far)))

15

