
CS3:
Introduction to Symbolic

Programming

Fall 2006 Nate Titterton
nate@berkeley.edu

Lecture 11:
Tree-recursion

Midterm #2 review

Schedule

Lecture: Lists, and ?
Lab: Work on the project

Nov 27–Dec 114

Lecture: Lists, and introduce the big project
Lab: Lists; start on the project

Nov 20-2413

Lecture: Midterm #2
Lab: Start on "Lists"

Nov 13-1712

Tree-recursion, Review, Exam problems
Lab: Tree recursions, Miniproject #3
Reading: "Change Making" case study
 Simply Scheme, Ch. 15

Nov 6-1011

Announcements
• Midterm 2 is coming…

- Next week, 80 minutes (4:10-5:30).
- Room 4 Leconte
- Open book, open notes, etc.
- Check for practice exams and solution on the

course portal and in the reader.
• Midterm 2 review session

- This Sunday, Nov 12, 2-4
- 430 Soda (as last time)

What does midterm #2 cover?

• Advanced recursion (accumulating, multiple
arguments, etc.). Including tree-recursion

• All of higher order functions
• Those "big" homeworks (bowling, compress, and

occurs-in)
• Elections miniproject (!)
• Reading and programs:

- Change making,
- Difference between dates #3 (HOF),
- tic-tac-toe

• SS chapters 14, 15, 7, 8, 9, 10
• Everything before the first Midterm (although, this

won't be the focus of a question)

Programming Style and Grading

• During grading, we are going to start
becoming “more strict” on style issues
- Starting with miniproject #3
- For the big project, style is important

• Why?
- Program maintenance: 6 months later, will you

know what your code does?
- Code “literacy”: sharing code

What issues of style matter?
• Keep procedures small !
• Good names for procedures and parameters
• Adequate comments

- Above and within procedures
• Put tests cases in a comment block
• Indent to aid program comprehension

• Proper use of global variables
• Avoid nesting conditional statements
• Data abstraction

Tree recursion

Advanced recursion

........................

...151010515

... 146414

... 13313

... 1212

... 111

... 10

...543210

r
o
w
s

(R)

 columns (C)

Pascal’s
Triangle

• How many ways can you choose C things from R choices?
• Coefficients of the (x+y)^R: look in row R
• etc.

(define (pascal C R)
 (cond
 ((= C 0) 1) ;base case
 ((= C R) 1) ;base case
 (else ;tree recurse
 (+ (pascal C (- R 1))
 (pascal (- C 1) (- R 1))
)))

> (pascal 2 5)

(+
(pascal 2 5)

(pascal 2 4)

(pascal 1 4)

(+

(+

(pascal 2 3)

(pascal 1 3)

(pascal 1 3)

(pascal 0 3)

(+ (pascal 2 2)
(pascal 1 2)

(pascal 1 2)
(pascal 0 2)

 1

(pascal 1 2)
(pascal 0 2)  1

 1

(+ (pascal 1 1)
(pascal 0 1)  1

 1

(+ (pascal 1 1)  1
(pascal 0 1)  1

 1
(+ (pascal 1 1)  1

(pascal 0 1)  1

Chips and Drinks

(snack 1 2)  3
- This includes (chip, drink, drink), (drink, chip,

drink), and (drink, drink, chip).
(snack 2 2)  6

- (c c d d), (c d c d), (c d d c)
(d c c d), (d c d c), (d d c c)

"I have some bags of chips and some drinks.
How many different ways can I finish all of

these snacks if I eat one at a time?

Midterm like
Problems…

make-bookends (a small problem)

• Write make-bookends, which is used this
way:

((make-bookends 'o) 'hi)  ohio

((make-bookends 'to) 'ron)  toronto

(define tom-proc (make-bookends 'tom))
(tom-proc "")  tomtom

Write successive-concatenation
(sc '(a b c d e))
 (a ab abc abcd abcde)
(sc '(the big red barn))
 (the thebig thebigred thebigredbarn)

(define (sc sent)
 (accumulate
 (lambda ??
)
 sent))

make-decreasing
• make-decreasing

- Takes a sentence of numbers
- Returns a sentence of numbers, having removed

elements of the input that were not larger than
all numbers to the right of them.

(make-decreasing '(9 6 7 4 6 2 3 1))
  (9 7 6 3 1)
(make-decreasing '(3))  (3)

Write first as a recursion, then as a HOF

CS3:
Introduction to Symbolic

Programming

Fall 2006 Nate Titterton
nate@berkeley.edu

Lecture 11:
Tree-recursion

Midterm #2 review

2

Fall 2006 CS3: 2

Schedule

Lecture: Lists, and ?
Lab: Work on the project

Nov 27–Dec 114

Lecture: Lists, and introduce the big project
Lab: Lists; start on the project

Nov 20-2413

Lecture: Midterm #2
Lab: Start on "Lists"

Nov 13-1712

Tree-recursion, Review, Exam problems
Lab: Tree recursions, Miniproject #3
Reading: "Change Making" case study
 Simply Scheme, Ch. 15

Nov 6-1011

Fall 2006 CS3: 3

Announcements
• Midterm 2 is coming…

- Next week, 80 minutes (4:10-5:30).
- Room 4 Leconte
- Open book, open notes, etc.
- Check for practice exams and solution on the

course portal and in the reader.
• Midterm 2 review session

- This Sunday, Nov 12, 2-4
- 430 Soda (as last time)

Fall 2006 CS3: 4

What does midterm #2 cover?

• Advanced recursion (accumulating, multiple
arguments, etc.). Including tree-recursion

• All of higher order functions
• Those "big" homeworks (bowling, compress, and

occurs-in)
• Elections miniproject (!)
• Reading and programs:

- Change making,
- Difference between dates #3 (HOF),
- tic-tac-toe

• SS chapters 14, 15, 7, 8, 9, 10
• Everything before the first Midterm (although, this

won't be the focus of a question)

Fall 2006 CS3: 5

Programming Style and Grading

• During grading, we are going to start
becoming “more strict” on style issues
- Starting with miniproject #3
- For the big project, style is important

• Why?
- Program maintenance: 6 months later, will you

know what your code does?
- Code “literacy”: sharing code

Fall 2006 CS3: 6

What issues of style matter?
• Keep procedures small !
• Good names for procedures and parameters
• Adequate comments

- Above and within procedures
• Put tests cases in a comment block
• Indent to aid program comprehension

• Proper use of global variables
• Avoid nesting conditional statements
• Data abstraction

Tree recursion

Click to add text

Fall 2006 CS3: 8

Advanced recursion

........................

...151010515

... 146414

... 13313

... 1212

... 111

... 10

...543210

r
o
w
s

(R)

 columns (C)

Pascal’s
Triangle

• How many ways can you choose C things from R choices?
• Coefficients of the (x+y)^R: look in row R
• etc.

Fall 2006 CS3: 9

(define (pascal C R)
 (cond
 ((= C 0) 1) ;base case
 ((= C R) 1) ;base case
 (else ;tree recurse
 (+ (pascal C (- R 1))
 (pascal (- C 1) (- R 1))
)))

Fall 2006 CS3: 10

> (pascal 2 5)

(+
(pascal 2 5)

(pascal 2 4)

(pascal 1 4)

(+

(+

(pascal 2 3)

(pascal 1 3)

(pascal 1 3)

(pascal 0 3)

(+ (pascal 2 2)
(pascal 1 2)

(pascal 1 2)
(pascal 0 2)

 1

(pascal 1 2)
(pascal 0 2)  1

 1

(+ (pascal 1 1)
(pascal 0 1)  1

 1

(+ (pascal 1 1)  1
(pascal 0 1)  1

 1
(+ (pascal 1 1)  1

(pascal 0 1)  1

 11

Fall 2006 CS3: 11

Chips and Drinks

(snack 1 2)  3
- This includes (chip, drink, drink), (drink, chip,

drink), and (drink, drink, chip).
(snack 2 2)  6

- (c c d d), (c d c d), (c d d c)
(d c c d), (d c d c), (d d c c)

"I have some bags of chips and some drinks.
How many different ways can I finish all of

these snacks if I eat one at a time?

;;; snack

(define (snack chips drinks)
 (cond ((and (= 0 chips) (= 0 drinks))
 ;; both are 0, no more ways...
 0)
 ((or (= 0 chips) (= 0 drinks))
 ;; one is zero, one isn't, one remaining way
 1)
 (else (+ (snack (- chips 1) drinks)
 (snack chips (- drinks 1))))))

Midterm like
Problems…

Click to add text

 13

Fall 2006 CS3: 13

make-bookends (a small problem)

• Write make-bookends, which is used this
way:

((make-bookends 'o) 'hi)  ohio

((make-bookends 'to) 'ron)  toronto

(define tom-proc (make-bookends 'tom))
(tom-proc "")  tomtom

(define (make-bookends wd)
 (lambda (inner-wd) (word wd inner-wd wd)))

 14

Fall 2006 CS3: 14

Write successive-concatenation
(sc '(a b c d e))
 (a ab abc abcd abcde)
(sc '(the big red barn))
 (the thebig thebigred thebigredbarn)

(define (sc sent)
 (accumulate
 (lambda ??
)
 sent))

That inner lambda is tricky. Remember, the accumulate needs to return a
sentence, so the right argument may be a word (the first time it is called) or a
sentence (every other time):

(lambda (wd so-far)
 (if (word? so-far)
 (se wd (word wd so-far)) ;; initial invocation
 (se wd ;; other invocations
 ;;prepend-each
 (every
 (lambda (so-far-element)
 (word wd sent-so-far-element))
 so-far)))
)

That every inside also requires a lambda, because the function needs to have
one argument, but also use the value of wd.

 15

Fall 2006 CS3: 15

make-decreasing
• make-decreasing

- Takes a sentence of numbers
- Returns a sentence of numbers, having removed

elements of the input that were not larger than
all numbers to the right of them.

(make-decreasing '(9 6 7 4 6 2 3 1))
  (9 7 6 3 1)
(make-decreasing '(3))  (3)

Write first as a recursion, then as a HOF

;;recursion -- right to left
(define (make-decreasing sent)
 (cond ((empty? sent) '())
 ((empty? (butfirst sent))
 (first sent))
 ((> (last (butlast sent))
 (last sent))
 (se (make-decreasing (butlast sent))
 (last sent)))
 (else
 (se (make-decreasing (butlast (butlast sent)))
 (last sent)))
))

;; recursion -- left to right
(define (make-decreasing sent)
 (cond ((or (empty? sent)
 (empty? (bf sent)))
 sent)
 ((bigger-than-all? (first sent) (bf sent))
 (se (first sent)
 (make-decreasing (bf sent))))
 (else (make-decreasing (bf sent)))
))
(define (bigger-than-all? num sent)
 (cond ((empty? sent) #t)
 ((> num (first sent))
 (bigger-than-all? num (bf sent)))
 (else #f)))

;; HOF
(define (make-decreasing sent)
 (accumulate
 (lambda (num sent-so-far)
 (if (word? sent-so-far) ;; first time thru
 (if (< sent-so-far num)
 (se num sent-so-far)
 (se sent-so-far))
 (if (< (first sent-so-far) num)
 (se num sent-so-far)
 sent-so-far)))
 sent))

