
CS3:
Introduction to Symbolic

Programming

Fall 2006 Nate Titterton
nate@berkeley.edu

Lecture 10:
Tic-tac-toe

Lambda

Schedule

Lecture: Midterm #2
Lab: Start on "Lists"

Nov 13-1712

Tree-recursion, Review, Exam problems
Lab: Tree recursions, Miniproject #3
Reading: "Change Making" case study
 Simply Scheme, Ch. 15

Nov 6-1011

More HOF, Tic-tac-toe
Lab: Tic-tac-toe
 Starting Miniproject #3
Reading: Simply Scheme, Ch. 10

Oct 30 -Nov 310

Introduction to Higher Order Procedures
Reading: Simply Scheme, Ch. 7-9
 "Difference btw Dates" (HOF soln)

Oct 23-279

When should the MT2
review session be?

Tic Tac Toe

 X | |
---+---+---
 O | O | X
---+---+---
 | |

 "X _ _"

 "O O X"

 "_ _ _"

"X _ _ O O X _ _ _"

The board

Tic-tac-toe hints

• Read the chapter!
• You will need to be familiar with vocabulary

- positions, triples, "forks", "pivots", and so on
• This chapter in the book comes before

recursion.
- You would solve things differently if you used

recursion
• The code (at the end of the chapter) has no

comments.

 X | |
---+---+---
 O | O | X
---+---+---
 | |

"X _ _ O O X _ _ _"

Triples (another representation of a board)

()x23 oox 789 xo7 2o8 3x9 xo9 3o7

procedures and

 lambda

In Scheme, procedures are first-class objects

• You can assign them a name
• You can pass them as arguments to

procedures
• You can return them as the result of

procedures
• You can include them in data structures

1. Well, you don't know how to do all of these yet.

3. What else in scheme is a first-class object?

The "hard" one is #3: returning procedures

;; this returns a procedure
(define (make-add-to number)
 (lambda (x) (+ number x)))

;; this also returns a procedure
(define add-to-5 (make-add-to 5))

;; hey, where is the 5 kept!?
(add-to-5 8)  13

((make-add-to 3) 20)  23

the lambda form
• "lambda" is a special form that returns a

function:

(lambda (arg1 arg2 …)
statements
)

(lambda (x) (* x x))

 ➩ ➩ ➩ ➩ ➩
 a procedure that takes one argument and multiplies it by itself

Using lambda with define

• These are the same:

(define (square x)
 (* x x))

(define square
 (lambda (x)
 (* x x)))

Using lambda with define

• These are VERY DIFFERENT:

(define (adder1 y)
 (lambda (x) (+ x 1)))

(define adder2
 (lambda (x) (+ x 1)))

(lambda (sent)
 (if (empty? sent)
 '()
 (se (square (first sent))
 (???? (bf sent)))))

Can a lambda-defined function be recursive?

When do you NEED lambda?
1. When you need the context (inside a two-

parameter procedure)

(add-suffix '-is-great '(nate sam mary))
  (nate-is-great sam-is-great
 mary-is-great)

3. When you need to make a function on the
fly

Review

Higher order
procedures

Higher order function (HOFs)
• A HOF is a procedure that takes a procedure

as an argument.
• There are three main ones that work with

words and sentences:
- every

- take a one-argument procedure that returns a word
- do something to each element

- keep
- takes a one-argument predictate
- return only certain elements

- accumulate
- takes a two-argument procedure
- combine the elements

A definition of every
(define (my-every proc ws)
 (if (empty? ws)
 '()
 (se (proc (first ws))
 (my-every (bf ws))
)))

HOFs do a lot of work for you:
• Checking the conditional
• Returning the proper base case
• Combing the various recursive steps
• Invoking itself recursively on a smaller problem

Accumulate
• The direction matters: right to left

-(accumulate / '(4 2 2))
does not equal 1, but 4.

• Think about expanding an accumulate
-(accumulate + '(1 2 3 4))
 (+ 1 (+ 2 (+ 3 4)))

-(accumulate / '(4 2 2))
 (/ 4 (/ 2 2))

•accumulate can return a sentence…
- Here, the argument the first time accumulate is

run (when it reads the last two words of the
sentence) will be different from additional calls
(when it uses the return value of its procedure,
which is a sentence)

Which HOFs would you use to write these?

1) capitalize-proper-names
(c-p-n '(mr. smith goes to washington))  (mr. Smith goes to Washington)

3) count-if
(count-if odd? '(1 2 3 4 5))  3

5) longest-word
(longest-word '(I had fun on spring break))  spring

7) count-vowels-in-each
(c-e-l '(I have forgotten everything))  (1 2 3 3)

9) squares-greater-than-100
(s-g-t-100 '(2 9 13 16 9 45)  (169 256 2025)

11) root of the sum-of-squares
(sos '(1 2 3 4 5 6 7)  30

13) successive-concatenation
(sc '(a b c d e)  (a ab abc abcd abcde)

Write successive-concatenation
(sc '(a b c d e))
 (a ab abc abcd abcde)
(sc '(the big red barn))
 (the thebig thebigred thebigredbarn)

(define (sc sent)
 (accumulate
 (lambda ??
)
 sent))

Hangman-status

(hangman-status 'joebob 'abcde)
  __eb_b

(define (hangman-status secret-wd ltrs)
 ???
)

CS3:
Introduction to Symbolic

Programming

Fall 2006 Nate Titterton
nate@berkeley.edu

Lecture 10:
Tic-tac-toe

Lambda

2

Spring 2006 CS3: 2

Schedule

Lecture: Midterm #2
Lab: Start on "Lists"

Nov 13-1712

Tree-recursion, Review, Exam problems
Lab: Tree recursions, Miniproject #3
Reading: "Change Making" case study
 Simply Scheme, Ch. 15

Nov 6-1011

More HOF, Tic-tac-toe
Lab: Tic-tac-toe
 Starting Miniproject #3
Reading: Simply Scheme, Ch. 10

Oct 30 -Nov 310

Introduction to Higher Order Procedures
Reading: Simply Scheme, Ch. 7-9
 "Difference btw Dates" (HOF soln)

Oct 23-279

When should the MT2
review session be?

Click to add text

Tic Tac Toe

Click to add text

Spring 2006 CS3: 5

 X | |
---+---+---
 O | O | X
---+---+---
 | |

 "X _ _"

 "O O X"

 "_ _ _"

"X _ _ O O X _ _ _"

The board

Spring 2006 CS3: 6

Tic-tac-toe hints

• Read the chapter!
• You will need to be familiar with vocabulary

- positions, triples, "forks", "pivots", and so on
• This chapter in the book comes before

recursion.
- You would solve things differently if you used

recursion
• The code (at the end of the chapter) has no

comments.

 7

Spring 2006 CS3: 7

 X | |
---+---+---
 O | O | X
---+---+---
 | |

"X _ _ O O X _ _ _"

Triples (another representation of a board)

()x23 oox 789 xo7 2o8 3x9 xo9 3o7

(find-triples 'x__oox___)  (x23 oox 789 xo7 "2o8" "3x9" xo9 "3o7")

procedures and

 lambda

 9

Spring 2006 CS3: 9

In Scheme, procedures are first-class objects

• You can assign them a name
• You can pass them as arguments to

procedures
• You can return them as the result of

procedures
• You can include them in data structures

1. Well, you don't know how to do all of these yet.

3. What else in scheme is a first-class object?

First-class objects (in scheme) can:
-Be named
-Be an parameter to functions
-Be returned from functions
-Be stored in other data structures

Spring 2006 CS3: 10

The "hard" one is #3: returning procedures

;; this returns a procedure
(define (make-add-to number)
 (lambda (x) (+ number x)))

;; this also returns a procedure
(define add-to-5 (make-add-to 5))

;; hey, where is the 5 kept!?
(add-to-5 8)  13

((make-add-to 3) 20)  23

Spring 2006 CS3: 11

the lambda form
• "lambda" is a special form that returns a

function:

(lambda (arg1 arg2 …)
statements
)

(lambda (x) (* x x))

 ➩ ➩ ➩ ➩ ➩
 a procedure that takes one argument and multiplies it by itself

 12

Spring 2006 CS3: 12

Using lambda with define

• These are the same:

(define (square x)
 (* x x))

(define square
 (lambda (x)
 (* x x)))

The top form is just a shortcut, really, for the bottom form. We would get tired
having to type l-a-m-b-d-a all the time, so the above form is quicker.

 13

Spring 2006 CS3: 13

Using lambda with define

• These are VERY DIFFERENT:

(define (adder1 y)
 (lambda (x) (+ x 1)))

(define adder2
 (lambda (x) (+ x 1)))

adder1 takes a single argument and returns a procedure (that takes a single
argument and returns 1 more than it)

adder2 takes a single argument and returns one more than it.

(lambda (sent)
 (if (empty? sent)
 '()
 (se (square (first sent))
 (???? (bf sent)))))

Can a lambda-defined function be recursive?

In cs3, nope.

But, you will find a way to make recursive lambda (non-named) functions if
you continue in CS. (You might google for '"anonymous recursion" in scheme'
or something like that).

 15

Spring 2006 CS3: 15

When do you NEED lambda?
1. When you need the context (inside a two-

parameter procedure)

(add-suffix '-is-great '(nate sam mary))
  (nate-is-great sam-is-great
 mary-is-great)

3. When you need to make a function on the
fly

Review

Higher order
proceduresClick to add text

Spring 2006 CS3: 17

Higher order function (HOFs)
• A HOF is a procedure that takes a procedure

as an argument.
• There are three main ones that work with

words and sentences:
- every

- take a one-argument procedure that returns a word
- do something to each element

- keep
- takes a one-argument predictate
- return only certain elements

- accumulate
- takes a two-argument procedure
- combine the elements

 18

Spring 2006 CS3: 18

A definition of every
(define (my-every proc ws)
 (if (empty? ws)
 '()
 (se (proc (first ws))
 (my-every (bf ws))
)))

HOFs do a lot of work for you:
• Checking the conditional
• Returning the proper base case
• Combing the various recursive steps
• Invoking itself recursively on a smaller problem

Spring 2006 CS3: 19

Accumulate
• The direction matters: right to left

-(accumulate / '(4 2 2))
does not equal 1, but 4.

• Think about expanding an accumulate
-(accumulate + '(1 2 3 4))
 (+ 1 (+ 2 (+ 3 4)))

-(accumulate / '(4 2 2))
 (/ 4 (/ 2 2))

•accumulate can return a sentence…
- Here, the argument the first time accumulate is

run (when it reads the last two words of the
sentence) will be different from additional calls
(when it uses the return value of its procedure,
which is a sentence)

 20

Spring 2006 CS3: 20

Which HOFs would you use to write these?

1) capitalize-proper-names
(c-p-n '(mr. smith goes to washington))

  (mr. Smith goes to Washington)
3) count-if

(count-if odd? '(1 2 3 4 5))  3
5) longest-word

(longest-word '(I had fun on spring break))  spring
7) count-vowels-in-each

(c-e-l '(I have forgotten everything))  (1 2 3 3)
9) squares-greater-than-100

(s-g-t-100 '(2 9 13 16 9 45)  (169 256 2025)
11) root of the sum-of-squares

(sos '(1 2 3 4 5 6 7)  30
13) successive-concatenation

(sc '(a b c d e)  (a ab abc abcd abcde)

1) Every
2) Keep
3) Accumulate (longest-word needs to compare elements of the sentence; it

can't consider each element in isolation)
4) Every containing a keep (count-if)
5) Keep containing an every
6) Accumulate containing an every
7) Just accumulate. This isn't an every, although it looks like it at first glance,

because you can't process the non-first elements without determining the
elements that came before!

 21

Spring 2006 CS3: 21

Write successive-concatenation
(sc '(a b c d e))
 (a ab abc abcd abcde)
(sc '(the big red barn))
 (the thebig thebigred thebigredbarn)

(define (sc sent)
 (accumulate
 (lambda ??
)
 sent))

Email me for the solution if you want it before next lecture!

 22

Spring 2006 CS3: 22

Hangman-status

(hangman-status 'joebob 'abcde)
  __eb_b

(define (hangman-status secret-wd ltrs)
 ???
)

Some more practice with HOF…

