
CS3:
Introduction to Symbolic

Programming

Fall 2006 Nate Titterton
nate@berkeley.edu

Lecture 8:
The last bit of recursion

Miniproject #2

Schedule

Lecture: Midterm #2
Lab: Start on "Lists"

Nov 13-1712

Finish HOF
Miniproject #3: Election processing

Nov 6-1011

More HOFOct 30 -Nov 310

Introduction to Higher Order ProceduresOct 23-279

Finishing recursion
Miniproject #2: Number names

Oct 16-208

Advanced recursionOct 9-137

Any "notetaker" volunteers?

• A student in the course needs a note taker,
which does pay a stipend. If you are taking
notes anyway…

- Come and see me after lecture if interested

The "screwed up" labs
• This is the order things should have

happened:
- First "advanced recursion" Lab: recursions with

multiple arguments
-my-equal?, zipping, merging

- Second Lab
- patterns in recursion, no-vowels, sort (using insert),
roman-sum-helper

- Last Lab
-mad-libs quiz, 1-extra?, fibonacci, thorough-
reversal

Number Spelling Miniproject

• Read Simply Scheme, page 233, which has
hints

• Another hint (principle): don't force
"everything" into the recursion.
- Special/border cases may be easier to handle

before you send yourself into a recursion

"Tail" recursions
• Accumulating recursions are sometimes

called "tail" recursions (by TAs, me, etc).
- But, not all recursions that keep track of a

number are "tail" recursions.

• A tail recursion has no combiner, so it can
end as soon as a base case is reached
- Compilers can do this efficiently

• An embedded recursion needs to combine
up all the recursive steps to form the
answer
- The poor compiler has to remember everything

Tail or embedded? (1/3)

(define (length sent)
 (if (empty? sent)
 0
 (+ 1 (length (bf sent)))))

Embedded!

(length '(a b c d)) 
 (+ 1 (length '(b c d)))
 (+ 1 (+ 1 (length '(c d))))
 (+ 1 (+ 1 (+ 1 (length '(d)))))
 (+ 1 (+ 1 (+ 1 (+ 1 (length '())))))
 (+ 1 (+ 1 (+ 1 (+ 1 0))))
 (+ 1 (+ 1 (+ 1 1)))
 (+ 1 (+ 1 2))
 (+ 1 3)
 4

Tail or embedded? (2/3)

(define (sent-max sent)
 (if (empty? sent)
 '()
 (sent-max-helper (bf sent) (first sent))))

(define (sent-max-helper sent max-so-far)
 (if (empty? sent)
 max-so-far
 (sent-max-helper (bf sent)
 (if (> max-so-far (first sent))
 max-so-far
 (first sent)))))

Tail or embedded? (3/3)

(define (find-evens sent)
 (cond ((empty? sent) ;base case
 '())
 ((odd? (first sent)) ;rec case 1
 (find-evens (bf sent)))
 (else ;rec case 2: even
 (se (first sent)
 (find-evens (bf sent))))
))

> (find-evens '(2 3 4 5 6))

 (se 2 (se 4 (se 6 ())
 (2 4 6)

(se 2

(se 4
(se 6

()

sent = (2 3 4 5 6)

sent = (3 4 5 6)

sent = (4 5 6)

sent = (5 6)

sent = (6)

sent = ()

Tree recursion: fibonacci
• The fibonacci sequence:

1 1 2 3 5 8 13 21 34 55

(define (fib n)
 (if (<= n 2)
 1 ;; base case
 (+ (fib (- n 1)) ;; recursive case
 (fib (- n 2)))))

Tree recursion: Pascals triangle

........................

...151010515

... 146414

... 13313

... 1212

... 111

... 10

...543210

r
o
w
s

(R)

 columns (C)

Pascal’s
Triangle

• How many ways can you choose C things from R choices?
• Coefficients of the (x+y)^R: look in row R
• etc.

(define (pascal C R)
 (cond
 ((= C 0) 1) ;base case
 ((= C R) 1) ;base case
 (else ;tree recurse
 (+ (pascal C (- R 1))
 (pascal (- C 1) (- R 1)))
)))

> (pascal 2 5)

(+
(pascal 2 5)

(pascal 2 4)

(pascal 1 4)

(+

(+

(pascal 2 3)

(pascal 1 3)

(pascal 1 3)

(pascal 0 3)

(+ (pascal 2 2)
(pascal 1 2)

(pascal 1 2)
(pascal 0 2)

 1

(pascal 1 2)
(pascal 0 2)  1

 1

(+ (pascal 1 1)
(pascal 0 1)  1

 1

(+ (pascal 1 1)  1
(pascal 0 1)  1

 1
(+ (pascal 1 1)  1

(pascal 0 1)  1

pair-all
• Write pair-all, which takes a sentence of

prefixes and a sentence of suffixes and
returns a sentence pairing all prefixes to all
suffixes.
- (pair-all ‘(a b c) ‘(1 2 3)) 

(a1 b1 c1 a2 b2 c2 a3 b3 c3)

- (pair-all ‘(spr s k) ‘(ite at ing ong)) 
(sprite sprat spring sprong site sat sing
 song kite kat king kong)

binary

• Write binary, a procedure to generate the
possible binary numbers given n bits.

(binary 1)(0 1)
(binary 2)(00 01 10 11)
(binary 3)(000 001 010 011 100 101 110 111)

roman-sum-helper (from lab)
Write roman-sum-helper:

(define (roman-sum number-sent)
(if (empty? number-sent)

 0
 (roman-sum-helper (first number-sent)
 (bf number-sent)
 (first number-sent))))

Roman-sum-helper takes three arguments:
(define (roman-sum-helper so-far number-list most-
recent) ...)

(roman-sum '(100 10 50 1 5)) will recurse with:
(roman-sum-helper 100 '(10 50 1 5) 100)
(roman-sum-helper 110 '(50 1 5) 10)
(roman-sum-helper 140 '(1 5) 50)
(roman-sum-helper 141 '(5) 1)
(roman-sum-helper 156 '() 5)

