CS3:

Introduction to Symbolic
Programming

Lecture 8:
The last bit of recursion
Miniproject #2

Fall 2006 Nate Titterton
nate@berkeley.edu

Schedule

7 Oct 9-13 Advanced recursion

9 | Oct 23-27 Introduction to Higher Order Procedures

10 | Oct 30-Nov 3 | More HOF

11 | Nov 6-10 Finish HOF
Miniproject #3: Election processing
12 | Nov 13-17 Lecture: Midterm #2

Lab: Start on "Lists"

Any "notetaker” volunteers?

* A student in the course needs a note taker,
which does pay a stipend. If you are taking
notes anyway...

- Come and see me after lecture if interested

The "screwed up™ labs

* This is the order things should have
happened:

- First "advanced recursion™ Lab: recursions with
multiple arguments
“my-equal?, zipping, merging
- Second Lab

- patterns in recursion, no-vowels, sort (using insert),
roman-sum-helper

- Last Lab

~“mad-1libs quiz, 1-extra?, fibonacci, thorough-
reversal

Number Spelling Miniproject

* Read Simply Scheme, page 233, which has
hints

* Another hint (principle): don't force
"everything" into the recursion.

- Special/lborder cases may be easier to handle
before you send yourself into a recursion

"Tail" recursions

* Accumulating recursions are sometimes
called "tail” recursions (by TAs, me, etc).

- But, not all recursions that keep track of a
number are "tail"” recursions.

* A tail recursion has no combiner, so it can
end as soon as a base case is reached
- Compilers can do this efficiently

* An embedded recursion needs to combine
up all the recursive steps to form the
answer

- The poor compiler has to remember everything

Tail or embedded? (1/3)

(define (length sent)
(1f (empty? sent)
0
(+ 1 (length (bf sent)))))

Embedded!

(length '"(a b c d)) =2

(+

1

R e T e T W e S S =

length "(b c d)))

(

(+ 1 (length '(c d))))

(+ 1 (+ 1 (length '"(d)))))

(+1 (+1 (+ 1 (length "())))))
(+ 1 (+1 (+1 0))))

(+ 1 (+ 1 1)))

(+ 1 2))

3

)

Tail or embedded? (2/3)

(define (sent-max sent)
(1f (empty? sent)
" ()
(sent—-max-helper (bf sent) (first sent))))

(define (sent-max-helper sent max-so-far)
(1f (empty? sent)
max—-so—far
(sent—-max—-helper (bf sent)
(1f (> max—-so-far (first sent))
max—-so—far
(first sent)))))

Tail or embedded? (3/3)

(define (find-evens sent)
(cond ((empty? sent) ;base case
" ())
((odd? (first sent)) ;rec case 1
(find-evens (bf sent)))
(else ;rec case 2: even
(se (first sent)
(find-evens (bf sent))))

))

> (find-evens '(2 3 4 5 6

sent=(23456)

(se 2 sent=(3456)
sent=(456)
(se 4 sent=(56)
sent=(6)
(se 6 sent=()

()

> (se 2 (se 4 (se 6 ())
> (2 4 6)

Tree recursion: fibonacci

* The fibonacci sequence:
11 2 3 5 8 13 21 34 55

(define (fib n)
(if (<= n 2)
1 ;; base case
(+ (£fib (- n 1)) ;7 recursive case
(fib (- n 2)))))

Tree recursion: Pascals triangle

columns (C)
0 1 2 3 4 5

0 1

1 1 1
r
© 2 1 2 1
W
S 3 1 3 3 1
(R) 4 1 4 6 4 1

5 1 5 10 10 5 1

Pascal’'s * How many ways can you choose C things from R choices?
. * Coefficients of the (x+y)*R: look i R
Triangle . (x+y)R: ook in row

(define (pascal C R)

(cond
((=C 0) 1) ;base case
((=CR) 1) ;base case
(else ; tree recurse
(+ (pascal C (- R 1))

(pascal (- C 1) (- R 1)))
)))

> (pascal 2. 5)
(pascal 2 5)

(+ (pascal 2 4)

(pascal 2 3)
(+ (+] (pascal 2 2) S5 1
(pascal 1 2) pE——
(pascal 1 2) —
(pascal 0 2) = 1

(pascal 1 4)
(pascal 13y

T e T S————————————————————————————————
(+ (pascal 1 2) e

(pascal 0 2) = 1

(pascal 0 3)
= 1

pair-all

* Write pair-a11, Which takes a sentence of
prefixes and a sentence of suffixes and
returns a sentence pairing all pretixes to all

suffixes.

- (pair-all ‘(abec) ‘(1 2 3)) =
(al bl cl1 a2 b2 c2 a3 b3 c3)

- (pair-all ‘(spr s k) ‘(ite at ing ong)) =

(sprite sprat spring sprong site sat sing
song kite kat king kong)

binary

* Write binary, a procedure to generate the
possible binary numbers given n bits.

(binary 1)=2> (0 1)
(binary 2)=2> (00 01 10 11)
(binary 3)=2> (000 001 010 011 100 101 110 111)

roman-sum-helper (from lab)

Write roman-sum-helper:

(define (roman-sum number-sent)
(if (empty? number-sent)
0
(roman-sum-helper (first number-sent)
(bf number-sent)
(first number-sent))))

Roman-sum-helper takes three arguments:

(define (roman-sum-helper so-far number-list most-
recent) ...)

(roman-sum ' (100 10 50 1 5)) will recurse with:
(roman-sum-helper 100 ' (10 50 1 5) 100)
(roman-sum-helper 110 '(50 1 5) 10)
(roman-sum-helper 140 ' (1 5) 50)
(roman-sum-helper 141 ' (5) 1)
(roman-sum-helper 156 '() 5)

