
CS3:
Introduction to Symbolic

Programming

Fall 2006 Nate Titterton
nate@berkeley.edu

Lecture 5:
Recursion

Midterm-like problems

Spring 2006 CS3: 2

Schedule

Lecture: finishing recursion
Lab: Miniproject #2

Oct 16-208

Lecture: Advanced Recursion
Lab: Recursion III

Oct 9-137

Lecture: Midterm 1
Lab: Recursion II

Oct 2-66

Lecture: Introduction to Recursion
Lab: Recursion

Sept 25-295

Lecture: Data abstraction in DbD
Lab: Miniproject I

Sept 18-224

Announcements

• Nate's office hours:
- Wednesday, 1:30-3:30, in 329 Soda
- Special: Monday Oct 2nd, 1-3pm, in 329 Soda

• Midterm next week!
- (More on this in a bit)

• Reading for this week
- Simply Scheme, chapter 11
- Difference between Dates, Recursive version
- (These will be on the midterm)

• Still having trouble working at home?
- Go to 333 Soda hall !

Spring 2006 CS3: 4

Drop day
• The last day to drop is Sept 29

- I think

Recursion
• Everyone thinks it's hard!

- (well, it is… aha!-hard, not complicated-hard)

• The first technique (in this class) to handle
arbitrary length inputs.
- There are other techniques, easier for some

problems.

• What is it?

An algorithmic technique where a function, in order to
accomplish a task, calls itself with some part of the
task.

All recursion procedures need…

1. Base Case (s)
• Where the problem is simple enough to be solved

directly

2. Recursive Cases (s)
1. Divide the Problem

• into one or more smaller problems
2. Invoke the function

• Have it call itself recursively on each smaller part
3. Combine the solutions

• Combine each subpart into a solution for the whole

(define (find-first-even sent)
 (if (even? (first sent))

 (first sent) ;base case: return
 ; that even number
 (find-first-even (bf sent))
 ;recurse on the
 ; rest of sent
))

Problem: find the first even number in a sentence of numbers

 (if <test>

 (<do the base case>)

 (<do the recursive case>)

Count the number of words in a sentence

(define (count sent)
 (if (empty? (bf sent))
 1 ;base case: return 1
 (+ 1
 (count (bf sent)) ;recurse on the
 ; rest of sent

))

Base cases can be tricky
• By checking whether the (bf sent) is empty,

rather than sent, we won't choose the recursive
case correctly on that last element!
- Or, we need two base cases, one each for the last element

being odd or even.
• Better: let the recursive cases handle all the

elements

Your book describes this well

(define (count sent)
 (if (empty? sent)
 0 ;base case: return 0
 (+ 1
 (count (bf sent)) ;recurse on the
 ; rest of sent

))

(define (count sent)
 (if (empty? (bf sent))
 1 ;base case: return 1
 (+ 1
 (count (bf sent)) ;recurse on the
 ; rest of sent

))

Count the number of words in a sentence

> (count '(a b c))

 (+ 1 (+ 1 (+ 1 0)))
 3

(+ 1

(+ 1
(+ 1

0

sent = (a b c)

sent = (b c)

sent = (c)

sent = ()

Spring 2006 CS3: 13

(define (find-evens sent)
 (cond ((empty? sent) ;base case
 '())
 ((odd? (first sent)) ;rec case 1
 (find-evens (bf sent)))
 (else ;rec case 2: even
 (se (first sent)
 (find-evens (bf sent))))
))

(define (find-evens sent)
 (cond (;base case
)
 (;rec case 1: odd
)
 (;rec case 2: even

)
))

Problem: find all the even numbers in a sentence of numbers

Spring 2006 CS3: 14

> (find-evens '(2 3 4 5 6))

 (se 2 (se 4 (se 6 ())))
 (2 4 6)

(se 2

(se 4
(se 6

()

sent = (2 3 4 5 6)

sent = (3 4 5 6)

sent = (4 5 6)

sent = (5 6)

sent = (6)

sent = ()

Why is recursion hard?
• ONE function:

- replicates itself,
- knows how to stop,
- knows how to combine the “replications”

• There are many ways to think about recursion: you
absolutely do not need to understand all of them.
- Knowing recursion WILL help with all sorts of ways while

programming, even if you don’t often use it.

Midterm 1: Oct 2nd (next week)
- Location: 50 Birge
- Time: In the lecture slot, plus 20 minutes

- (4:10-5:30)

- Open book, open notes.
- Nothing that can compute, though

- Everything we’ve covered, including the coming
week on recursion.

- Review session this Saturday, Sep 30th, 2-4pm.
- 430 Soda (Wozniak lounge).

- Practice exam in reader (do this all at once)
- Check Announcements for more practice items,

solutions

Spring 2006 CS3: 17

Special midterm issues
• Several of you have come to me with

midterm conflicts

- You need to email me (and get a response) or
talk to me so I can get a count!

Sample problem for midterm 1

Consider a procedure named double that, given a word
as argument, returns a two-word sentence. The first word
is two. The second word is the result of adding an "s" to
the end of the argument.

(two boxs)(double 'box)
(two buss)(double 'bus)
(two apples)(double 'apple)
intended resultexpression

Now consider some incorrect implementations of
double. For each one, indicate what the call
(double 'apple)
will return. If no value is returned because the
procedure crashes, give the error message that
results.

(define (double wd)
 (sentence 'two (wd 's)))

(define (double wd)
 (sentence 'two (sentence wd s)))

(define (double wd)
 (sentence 'two '(word wd s)))

Spring 2006 CS3: 20

between?
Write a procedure called between? which takes three numbers

as arguments, and returns true if and only if the second
argument is between and not equal to the first and the third:

(between? 5 6 7) -> #t
(between? 7 6 5) -> #t

Part A: Write between? without using if or cond.

Part B: Write between? without using and or or.

Part C: Write a suite of test cases for between?. Make sure you
test the possible sets of parameters exhaustively as possible,
in order to test different ways the code could be written.

Also, make sure you describe what the result of the call should
be!

