
CS3:
Introduction to Symbolic

Programming

Spring 2006 Nate Titterton
nate@berkeley.edu

Lecture 3:
Review

Case Studies

Announcements

• Nate's office hours:
- Wednesday, 1:30-3:30
- 329 Soda

• Tue/Wed is a Catch-up day.
- Use this day to catch up! That is, go back over

the last two weeks and fill in places you missed
- You will all be ready to go on Thur/Fri, right?

• We are still waiting on readers for homework
grading…

Schedule

Lecture: Midterm 1
Lab: Recursion II

Oct 2-66

Lecture: Introduction to Recursion
Lab: Recursion

Sep 25-295

Lecture: Data abstraction in DbD
Lab: Miniproject I

Sep 18-224

Lecture: Case Studies
Reading: Difference between Dates

(just the first version in the reader)
Lab: Work with Difference between Dates

Sep 11-153

Lecture: <holiday>
Lab: Conditionals, Booleans, Testing

Sep 4-82

Review
What is Scheme?

- A easy yet powerful programming language
- The "Listener" makes testing easy
- Unique features like "quoting"

• Words and sentences
- Not usually part of scheme, but makes our early

work more accessible
• Quoting something means treating it literally:

- you are interested in the name that follows,
rather than what is named

- Quoting is a shortcut to putting literal things
right in your code. As your programs get bigger,
you will do this less and less.

Some terminology
• Conditional

- cond and if
• Booleans

- #t and #f
- in practice, everything is true except #f
false is true! (really, false is #t)

• Predicates
- procedures that return #t or #f
- by convention, their names end with a "?"

(odd? 5) ➨ #t
(member? 'x '(a e i o u)) ➨ #f

Review: testing

• There is much more to programming than
writing code

- Testing is crucial, and an emphasis of this
course

- Analysis
- Debugging
- Maintenance.
- "Design"

Some nice comments

• "In English, when something is in quotes we
think about it differently. Same in scheme"

• "In order to remember how to parenthesize
a cond statement... think of each statement
as an if without the 'if' "

(actually, in lecture I mentioned that these quotes came
from you guys, but I was wrong: these came from an
earlier semester Still, your quotes were just as good, I
just used the wrong slide...)

A video resource

• http://wla.berkeley.edu
Weiner lecture archives

• The "course" is an earlier CS3
- Different emphasis; early lectures may work

better than later ones
- Very different lab experience
- Same book

http://wla.berkeley.edu/

Write an answer procedure.
Write a procedure named answer that, given a sentence that

represents a question, returns a simple answer to that
question. (A question's last word ends with a question mark.) If
the argument sentence is not a question, answer should
merely return the argument unchanged.

- Given (am i ...?), answer should return
(you are ...).

- Given (are you ...?), answer should return
(i am ...).

- Given (some-other-word i ... ?), answer should
return (you some-other-word ...).

- Given (some-other-word you ... ?), answer
should return (i some-other-word ...).

- Given any other question, answer should return the result
of replacing the question mark by a period.

You are writing big programs now. But, what
can’t you do yet?

What does “understand a program” mean?

A big idea

• Data abstraction

- Constructors: procedures to make a piece of
data
-word and sentence

- Selectors: procedures to return parts of that data
piece
-first, butfirst, etc.

Case Studies
• Reading!?

• A case study:
- starts with a problem statement
- ends with a solution
- in between, a …story… (narrative)
- How a program comes to be

• You will write “day-span”, which calculates
the number of days between two dates in a
year

You need to read this
• The lab will cover the case study through a

variety of activities.
- This will culminate in the first “mini-project”

• We just may base exam questions on it

• It will make you a better programmer!
4 out of 5 educational researchers say so.

Some important points
• There is a large "dead-end" in this text

- Like occur in many programming projects
- Good "style" helps minimize the impacts of

these

• There is (often) a difference between good
algorithms and between human thinking

Extra Materials

(define (walk light city cops-present)
 (cond ((equal? city 'berkeley) 'strut)
 ((equal? light 'green) 'go)
 ((equal? light 'not-working)

 'go-if-clear)
 ((and (equal? light 'flashing-red)

 cops-present)
 'wait)

 ((equal? light 'flashing-red)
 'hurry)

 (else 'just-stand-there)))

Conditionals

