
CS3 Fall 04 – Midterm 1

Read and fill in this page now

Your name: ___________________________________

Your login name: ___________________________________

Your lab section day and time: ___________________________________

Your lab T.A.: ___________________________________

Name of the person sitting to your left: ___________________________________

Name of the person sitting to your right: ___________________________________

Prob 0: ________ Prob 1: ________ Prob 2: ________

Prob 3: ________ ________ ________

Prob 4: ________ ________ Prob 5: ________

Prob 6: ________ Total _________/28

You have one hour to finish this test, which should be reasonable; there will be
approximately 20 minutes of leeway given past one hour. Your exam should contain six
problems (numbered 0-5) on six pages, along with the code from the “Difference Between
Dates” program at the end.

This is an open-book test. You may consult any books, notes, or other paper-based
inanimate objects available to you. Read the problems carefully. If you find it hard to
understand a problem, ask us to explain it. If you have a question during the test, please
come to the front or the side of the room to ask it.

Restrict yourself to Scheme constructs covered in chapters 3-6 and 11 of Simply Scheme and
the “Difference Between Dates” case study, part 1.

Please write your answers in the spaces provided in the test; if you need to use the back of a
page make sure to clearly tell us so on the front of the page. We believe we have provided
more than enough space for your answers, so please don’t try to fill it all up.

Partial credit will be awarded where we can, so do try to answer each question.

Relax!

Login: _________________________

Problem 0 (1 point, 1 minute)
Put your login name on each page. Also make sure you have provided the information
requested on the first page.

Problem 1 (6 points, 10 minutes): Make the expressions correct
Add parentheses and procedures in the underlined areas to make these expressions return the
value specified. Do not define any new procedures. Be careful with parentheses and quotes!

You can leave the underlined areas blank, but all the explicit text must be included in your
expression—you can't just leave something out. If it is impossible to create an expression
that returns the value specified, write IMPOSSIBLE somewhere (to the right of the return
value, say).

1] (___________ 'scheme 'is 'a 'state 'of 'mind __________)
 (scheme is a state)

2] (sentence __________ (item 3 _____________________))
 (a mind)

3] (______________________ '(expression) ________________)
 i

4] (________________ '(go cal bears) ________________)
 gocalbears

5] (count _____________)
 0

6]
(if (or #f (and _________________ #f))
 'yep 'nope)
 yep

7]

(define (what-the sent)
 (if (empty? sent)
 ""
 (word "-um-" (first sent) (what-the (bf sent)))))

(what-the ___)
 "-um-i-um-like-um--um-cheese"

- 2 -

Login: _________________________

Problem 2 (5 points, 10 minutes) : Validating dates for day-span
Write a procedure called day-span-validated which takes the same arguments as
day-span and returns the same value as day-span when the argument dates are valid
(i.e., legal). If either of the dates is invalid, however, day-span-validated should
return (invalid date).

For instance:
(day-span-validated '(february 30)
 '(june 3))  (invalid date)
(day-span-validated '(june 4)
 '(may 15))  -19
(day-span-validated '(january 19)
 '(flugalmonth 5))  (invalid date)
(day-span-validated '(january three)
 '(may five))  (invalid date)

You can assume that each argument to day-span-validated is a sentence containing
two words. You can (and should) use procedures from the “Difference Between Dates”
case study, part I, that will help you. This code is included in an appendix at the end of the
exam. In particular, consider the procedures day-span, days-in-month, month-
name, and date-in-month. Assume that this is not a leap year.

- 3 -

Login: _________________________

Problem 3 (6 points, 10 minutes): Data Abstraction in School
You are part of a team working on a project to create, among other things, a database system
for schools. One of your tasks is to implement the school datatype in Scheme. This
question does not require recursion.

In the project, a school will have three pieces of information:
 A short name, which will be a single word,
 A full name, which will be one or more words,
 Enrollment, a number

For instance, here are some possible schools:
full name short name enrollment

University of California Berkeley Cal 23000
Rice Rice 2822
California Institute of Technology Caltech 900

Part A
Make a constructor procedure for the school datatype. Choose a reasonable name for the
procedure, and include good comments. (You will, of course, need to decide how the data is
stored; there is more than one correct way to do this.) Include a call to your constructor.

Part B
Make the three selector (accessor) procedures, with reasonable names and comments. DO
NOT use recursion when writing these.

Part C
What is a reasonable name of the boolean test procedure for this datatype? (That is, the
procedure that somebody can use to test whether a Scheme value is a school or not.) Don't
write this procedure, just name it.

- 4 -

Login: _________________________

Problem 4 (5 points, 9 minutes): Argue
Write a function called argue-response which takes a sentence and returns a sentence
in which the meaning is reversed. Perhaps the easiest way to explain how it reverses
meaning is through some examples:

(argue-response '(I hate the opera))  (you love the opera)
(argue-response '(you love cookies))  (I hate cookies)
(argue-response '(you hate
 everything that I cook)) 

(I love everything that
 you cook)

If the first two words in the sentence are not of the form you've seen, argue-response
takes a different tack, adding (all you ever say is) to the input:

(argue-response '(lets have dinner)) 
(all you ever say is lets
have dinner)

(argue-response '(what))  (all you ever say is what)

Part A:
Fill in the blanks below, assuming that the code implied by […] is written correctly.

 (define (argue-response remark)
 (cond
 ((starts-with? remark '(i hate))

)
 ((starts-with? remark '(i love)) […])
 ((starts-with? remark '(you love)) […])
 ((starts-with? remark '(you hate)) […])

 (else ___
)
))

Part B:
Write the function starts-with? so that the above code works correctly.

- 5 -

Login: _________________________

Problem 5 (5 points, 10 minutes): Count-vowels

Write a recursive procedure named count-vowels which takes a single word as input,
and returns the number of vowels in the word.

Assume that the function vowel? has been defined. You may define and use any other
helper functions that make sense to you.

For instance,
(count-vowels 'fred)  1
(count-vowels 'frederick)  3
(count-vowels 'happy)  1

- 6 -

(No login needed here)

Appendix A: Difference Between Dates, part I, code. This is not a question!
; Return the difference in days between earlier-date and
; later-date. earlier-date and later-date both represent
; dates in 2002, with earlier-date being the earlier of
; the two dates.
 (define (day-span earlier-date later-date)
 (cond
 ((same-month? earlier-date later-date)
 (same-month-span earlier-date later-date))
 ((consecutive-months? earlier-date later-date)
 (consec-months-span earlier-date later-date))
 (else
 (general-day-span earlier-date later-date))))

; Access procedures for the components of a date.
(define (month-name date) (first date))

(define (date-in-month date) (first (butfirst date)))

; Return true if date1 and date2 are dates in the same
; month, and false otherwise. Date1 and date2 both
; represent dates in 2002.
(define (same-month? date1 date2)
 (equal? (month-name date1) (month-name date2)))

; Return the number of the month with the given name.
 (define (month-number month)
 (cond
 ((equal? month 'january) 1)
 ((equal? month 'february) 2)
 ((equal? month 'march) 3)
 ((equal? month 'april) 4)
 ((equal? month 'may) 5)
 ((equal? month 'june) 6)
 ((equal? month 'july) 7)
 ((equal? month 'august) 8)
 ((equal? month 'september) 9)
 ((equal? month 'october) 10)
 ((equal? month 'november) 11)
 ((equal? month 'december) 12)))

; Return true if date1 is in the month that immediately
; precedes the month date2 is in, and false otherwise.
; Date1 and date2 both represent dates in 2002.
(define (consecutive-months? date1 date2)
 (=
 (month-number (month-name date2))
 (+ 1 (month-number (month-name date1)))))

; Return the difference in days between earlier-date and
; later-date, which both represent dates in the same month
; of 2002.
(define (same-month-span earlier-date later-date)
 (+ 1
 (-
 (date-in-month later-date)
 (date-in-month earlier-date))))

(No login needed here)

; Return the number of days in the month named month.
(define (days-in-month month)
 (cond
 ((equal? month 'january) 31)
 ((equal? month 'february) 28)
 ((equal? month 'march) 31)
 ((equal? month 'april) 30)
 ((equal? month 'may) 31)
 ((equal? month 'june) 30)
 ((equal? month 'july) 31)
 ((equal? month 'august) 31)
 ((equal? month 'september) 30)
 ((equal? month 'october) 31)
 ((equal? month 'november) 30)
 ((equal? month 'december) 31)))

; Return the number of days remaining in the month of the
; given date,including the current day. Date represents a
; date in 2002.
(define (days-remaining date)
 (+ 1 (- (days-in-month (month-name date))
 (date-in-month date))))

; Return the difference in days between earlier-date and
; later-date, which represent dates in consecutive months
; of 2002.
(define (consec-months-span earlier-date later-date)
 (+
 (days-remaining earlier-date)
 (date-in-month later-date)))

; Return the number of days from January 1 to the first day
; of the month named month.
(define (days-preceding month)
 (cond
 ((equal? month 'january) 0)
 ((equal? month 'february) 31)
 ((equal? month 'march) 59)
 ((equal? month 'april) 90)
 ((equal? month 'may) 120)
 ((equal? month 'june) 151)
 ((equal? month 'july) 181)
 ((equal? month 'august) 212)
 ((equal? month 'september) 243)
 ((equal? month 'october) 273)
 ((equal? month 'november) 304)
 ((equal? month 'december) 334)))

; Return the number of days from January 1 to the given
; date, inclusive. Date represents a date in 2002.
(define (day-of-year date)
 (+
 (days-preceding (month-name date))
 (date-in-month date)))

; Return the difference in days between earlier-date and
; later-date. Note: because day-span and general-day-span are equivalent,
; sometimes this function is written as day-span.
(define (general-day-span earlier-date later-date)
 (+ 1 (- (day-of-year later-date)
 (day-of-year earlier-date))))

- 8 -

