Lecture 9: Operational Amplifiers

Today, we will introduce our first integrated circuit element: the operational amplifier.

The operational amplifier, or op-amp, has three terminals*:

- V_{+}is called the non-inverting input terminal.
- V_{-}is called the inverting input terminal.
- V_{O} is called the output terminal.
* There are actually more connections to the device that are not shown. The device connects to a power supply, which is needed for proper operation, as well as ground.

I-V Relationship

- The I-V relationship for the op-amp is complicated, since it has multiple terminals.
- The op-amp can be modeled using the following circuit:

Circuit Model in linear region

- You can simply replace the op-amp symbol with the above circuit for analysis.
- However, the above model is only valid when V_{O} is within a certain range.

Rails and Saturation

- The output V_{O} must lie within a range determined by the supply voltages, which are not shown.
- It will limit or "clip" if V_{O} attempts to exceed the boundaries. We call the limits of the output the "rails".
- In the linear region, the op-amp output voltage V_{O} is equal to the gain A times the voltage across the input terminals.
- You can "blindly" use the linear region model, and check if the output exceeds a rail. If so,
 the output is equal to that rail voltage.

Example: Voltage Follower

- Find the output voltage. Assume the rails are not exceeded.

Ideal Op-Amp Assumptions

- While we can always use our circuit model for the linear region, it is complicated.

Circuit Model

- R_{i} is usually very large.
- R_{0} is usually very small.
- A is usually very large (like 10^{3} to 10^{6}).

- Thus, we can make the following ideal assumptions for easier, but still pretty accurate, analysis:
\square Assume $A=\infty$.
\square Assume $R_{i}=\infty$.
\square Assume $\mathrm{R}_{\mathrm{o}}=0 \Omega$

Ideal Op-Amp Model

Our idealized op-amp follows these rules within the linear region:

- Rule 1: $V_{+}-V_{-}=0$.
\square Why? If the output voltage is limited by rails, and the gain A is very large, then $\mathrm{V}_{+}-\mathrm{V}_{\text {. }}$ must be very small.
- Rule 2: No current goes in/out of the input terminals.
\square Why? $V_{+}-V_{\text {. }}$ is very small and R_{i} is very large.
- Remember current can go into/out the output terminal.
\square Why? There are connections not shown, and the current comes from those connections.

Example: Voltage Follower

- Find the output voltage. Assume the rails are not exceeded.

Utility of Voltage Follower

- Suppose I have a voltage coming out of a digital circuit.
- I want to apply the voltage to "turn on" some device that requires high power (the device "drains" a substantial amount of current).
- Digital circuits usually cannot provide much current; they are designed for low power consumption.
- If we put a voltage follower between the digital circuit and the load, the voltage follower replicates the desired voltage, and can also provide current through its power supply.

Op-Amp Circuits

- Op-Amp circuits usually take some input voltage and perform some "operation" on it, yielding an output voltage.
- Some tips on how to find the output, given the input:

Step 1: KVL around input loop (involves $\mathrm{V}_{\text {in }}$ and op-amp inputs)
Use Rule 1: Vp-Vn=0
Step 2: Find the current in the feedback path
Use Rule 2: No current into/out of op-amp inputs
Step 3: KVL around output loop (involves V_{o} and feedback path) Remember current can flow in/out op-amp output

Example: Inverting Amplifier

Example: Inverting Summing Amplifier

Non-inverting Amplifier

Important Points

- The amplifier output voltage does not depend on the "load" (what is attached to the output).
- The "form" of the output voltage (the signs of the scaling factors on the input voltages, for example) depends on the amplifier circuit layout.
- To change the values (magnitudes) of scaling factors, adjust resistor values.
- Input voltages which are attached to the + (non-inverting) amplifier terminal get positive scaling factors.
- Inputs attached to the - (inverting) terminal get negative scaling factors.
- You can use these principles to design amplifiers which perform a particular function on the input voltages.

Example: Voltage Divider

- Suppose I want to use the following circuit to supply a certain fraction of V_{IN} to whatever I attach.
- What is V_{O} if nothing is attached?
- What is V_{O} if a $1 \mathrm{k} \Omega$ resistor is attached?
- This circuit clearly does not supply the same voltage

to any attached load.
What could I add to the circuit so that it will supply the same fraction of V_{IN} to any attached device?

Example

- Design a circuit whose output is the sum of two input voltages.

Example

- Design a circuit whose output is the average of two input voltages.

