Today we will

- Revisit the CMOS inverter, concentrating on logic 0 and logic 1 inputs
- Come up with an easy model for MOS transistors involved in CMOS digital computation
- Investigate the "complementary" nature of CMOS logic circuits
- Introduce CMOS NAND and NOR
- Determine the effective R and C for CMOS logic transitions

- This leads us to a simpler model for transistors in CMOS circuits, when $V_{\text {IN }}$ is fully logic 0 or logic 1.

Transistor is cutoff. Zero current flow.
$V_{G S}=V_{D D}$ (for NMOS)
$V_{G S}=-V_{D D}$ (for PMOS)
G.

Transistor is not cutoff, but zero current flow of partner transistor causes $\mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V}$.

Practice 7

- Use this model to find $\mathrm{V}_{\text {OUT }}$ for the circuits below.

Verify the logical operation of the CMOS NAND circuit:

Verify the logical operation of the CMOS NAND circuit:

$[$

CMOS Networks

- Notice that $\mathrm{V}_{\text {OUT }}$ gets connected to either V_{DD} or ground by "active" (not cutoff) transistors.
- We say that these active transistors are "pulling up" or "pulling down" the output.
- NMOS transistors = pull-down network
- PMOS transistors = pull-up network
- These networks had better be complementary or $V_{\text {OUT }}$ could be "floating"-or attached to both $V_{D D}$ and ground at the same time.

$[$ Complementary Networks
- If inputs A and B are connected to parallel NMOS, A and B must be connected to series PMOS.
- The reverse is also true.
- Determining the logic function from CMOS circuit is not hard:
- Look at the NMOS half. It will tell you when the output is logic zero.
- Parallel transistors: "like or"
- Series transistors: "like and"

- The separation of charge by the oxide insulator creates a natural capacitance in the transistor from gate to source.
- The silicon through which I_{D} flows has a natural resistance.
- There are other sources of capacitance and resistance too.

- Suppose V_{IN} abruptly changed from logic 0 to logic 1.
$-\mathrm{V}_{\text {OUT1 }}$ may not change quickly, since is attached to the gates of the next inverter.
- These gates must collect/discharge electrons to change voltage.
- Each gate attached to the output contributes a capacitance.

- Where will these electrons come from/go to?
- No charges can pass through the cutoff transistor.
- Charges will go through the pull-down/pull-up transistors to ground. These transistors contribute resistance.

1. Determine the capacitance of each gate attached to the output. These combine in parallel. Higher fan-out = more capacitance.
2. Determine which transistors are pulling-up or pulling-down the output. Each contributes a resistance, and may need to be combined in series and/or parallel.
3. The C from 1) and R from 2) are the $R C$ for the $V_{\text {OUT1 }}$ transition.

[Example

- Suppose we have the following circuit:

- If A and B both transition from $\operatorname{logic} 1$ to $\operatorname{logic} 0$ at $\mathrm{t}=0$, find the voltage at the NAND output, $\mathrm{V}_{\text {OUT }}(\mathrm{t})$, for $\mathrm{t} \geq 0$.

Logic $0=0 \mathrm{~V}$
Logic $1=1 \mathrm{~V}$
NMOS resistance
$\mathrm{R}_{\mathrm{n}}=1 \mathrm{k} \Omega$
PMOS resistance
$R_{\mathrm{p}}=2 \mathrm{k} \Omega$
Gate capacitance
$\mathrm{C}_{\mathrm{G}}=50 \mathrm{pF}$

