Today we will

- Look at why our NMOS and PMOS inverters might not be the best inverter designs
- Introduce the CMOS inverter
- Analyze how the CMOS inverter works


When $\mathrm{V}_{\mathrm{IN}}$ changes to logic 0 , transistor gets cutoff. $\mathrm{I}_{\mathrm{D}}$ goes to 0 .
Resistor voltage goes to zero. $\mathrm{V}_{\text {out }}$ "pulled up" to 5 V .


When $\mathrm{V}_{\text {IN }}$ changes to logic 1 , transistor gets cutoff. $\mathrm{I}_{\mathrm{D}}$ goes to 0 .
Resistor voltage goes to zero. $\mathrm{V}_{\text {OUt }}$ "pulled down" to 0 V .


NMOS is "pull-down device"
PMOS is "pull-up device"
Each shuts off when not pulling

- We can follow the same procedure to solve for currents and voltages in the CMOS inverter as we did for the single NMOS and PMOS circuits.
- Remember, now we have two transistors so we write two I-V relationships and have twice the number of variables.
- We can roughly analyze the CMOS inverter graphically.




## CMOS Analysis



As $\mathrm{V}_{\mathbb{I N}}$ goes up, $\mathrm{V}_{\mathrm{GS}(\mathrm{n})}$ gets bigger Nmos I-V curve and $\mathrm{V}_{\mathrm{GS}(\mathrm{p})}$ gets less negative.

PMOS I-V curve (written in terms of NMOS variables)

$$
V_{10}=
$$

$$
V_{G S(n)}=
$$

$$
1.5 \mathrm{~V}
$$




## CMOS Analysis



As $\mathrm{V}_{\mathbb{I N}}$ goes up, $\mathrm{V}_{\mathrm{GS}(\mathrm{n})}$ gets bigger and $\mathrm{V}_{\mathrm{GS}(\mathrm{p})}$ gets less negative.

NMOS I-V curve
PMOS I-V curve (written in terms of NMOS variables)



## CMOS Analysis



As $\mathrm{V}_{\text {IN }}$ goes up, $\mathrm{V}_{\mathrm{GS}(\mathrm{n})}$ gets bigger $\quad$ NMOS I-V curve and $\mathrm{V}_{\mathrm{GS}(\mathrm{p})}$ gets less negative.

PMOS I-V curve
(written in terms of NMOS variables)
$\mathrm{V}_{\text {IN }}=$
$\mathrm{V}_{\mathrm{GS}(\mathrm{n})}=$
3.5 V
$V_{D S(n)}$



Important Points

- No $I_{D}$ current flow in Regions $A$ and $E$ if nothing attached to output; current flows only during logic transition
- If another inverter (or other CMOS logic) attached to output, transistor gate terminals of attached stage do not permit current: current still flows only during logic transition


