Lecture 20

Today we will

- Look at why our NMOS and PMOS inverters might not be the best inverter designs
- Introduce the CMOS inverter
- Analyze how the CMOS inverter works

Analysis of CMOS Inverter

NMOS is "pull-down device" PMOS is "pull-up device" Each shuts off when not pulling

We can follow the same procedure to solve for currents and voltages in the CMOS inverter as we did for the single NMOS and PMOS circuits.

- Remember, now we have **two transistors** so we write **two I-V relationships** and have **twice the number of variables**.
- We can roughly analyze the CMOS inverter graphically.

Important Points

- No I_D current flow in Regions A and E if **nothing** attached to output; current flows only during logic transition
- If another inverter (or other CMOS logic) attached to output, transistor gate terminals of attached stage do not permit current: current still flows only during logic transition

