Lecture 17

Today we will discuss

- Metal Oxide Semiconductor (MOS) Transistors
 - Physical structure
 - Physical operation
 - Circuit symbol and current/voltage designations
 - Modes of operation
 - I-V Relationship
 - Solution of MOS circuits

NMOS (N-Channel Metal Oxide Semiconductor) Transistor

NMOS Transistor in Equilibrium

When the transistor is left alone, some electrons from the n-type wells diffuse into the p-type material to fill holes.

This creates negative ions in the p-type material and positive ions are left behind in the n-type material.

NMOS Transistor in Cutoff

When a small, positive V_{GS} is applied, holes "move away" from the gate.

Electrons from complete atoms elsewhere in the p-type material move to fill holes near the gate instead.

When V_{GS} is larger than a **threshold** voltage $V_{TH(n)}$, the attraction to the gate is so great that free electrons collect there.

The applied V_{GS} creates an **induced n-type channel** under the gate (an area with free electrons).

NMOS Transistor Drain Current

When a positive V_{DS} is applied, the free electrons flow from the source to the drain. (Positive current flows from drain to source). The amount of current depends on V_{DS} , as well as the number of electrons in the channel, channel dimensions, and material.

NMOS Transistor Circuit Symbol V_{DS} drain V_{GS} gate I_D ↓ I_G source • metal oxide insulator metal metal n-type n-type p-type metal s $V_{\rm DS}$

NMOS I-V Characteristic

- Since the transistor is a 3-terminal device, there is no single I-V characteristic.
- **D** Note that because of the insulator, $I_G = 0$ A.
- We typically define the MOS I-V characteristic as
 - $I_{\text{D}} \text{ vs. } V_{\text{DS}} \qquad \text{ for a fixed } V_{\text{GS}}.$
- □ The I-V characteristic changes as V_{GS} changes.

NMOS I-V Curves

Modes of Operation

- □ For small values of V_{GS}, V_{GS} ≤ V_{TH(n)}, the n-type channel is not formed. No current flows. This is cutoff mode.
 □ When V_{GS} > V_{TH(n)}, current I_D may flow from drain to source, and the following modes of current flow are possible.
 The mode of current flow depends on the propelling voltage, V_{DS}, and the channel-inducing voltage, V_{GS} V_{TH(n)}.
 When V_{DS} < V_{GS} V_{TH(n)}, current is starting to flow. I_D increases rapidly with increased V_{DS}. This is triode mode.
 - When V_{DS} ≥ V_{GS} − V_{TH(n)}, current is reaching its maximum value. I_D does not increase much with increased V_{DS}. This is called saturation mode.

Faucet Analogy

Imagine the faucet on your kitchen sink.

- To make water flow, the water supply has to be connected to the faucet. This establishes a path for water to flow.
- Setting V_{GS} above the threshold voltage is like connecting the water supply.
- Cutoff = water supply disconnected (no path for current flow)
- Setting V_{GS} to a larger value is like connecting a high-pressure water supply—more flow can potentially occur.

Faucet Analogy

- The faucet itself is used to adjust water flow. You can turn the flow up and down.
- \square V_{DS} is like the faucet. It controls the amount of flow.
- There is, of course, a saturation point. If you keep turning the faucet control, eventually you won't get any more flow.
- **Triode = faucet in "normal range", controls flow**
- Saturation = faucet turned up to (or past) point for maximum flow

NMOS Equations

Cutoff Mode Occurs when $V_{GS} \le V_{TH(n)}$

I_D = 0

Triode Mode Occurs when $V_{GS} > V_{TH(n)}$ and $V_{DS} < V_{GS} - V_{TH(n)}$

$$I_{D} = \frac{W}{L} \mu_{n} C_{OX} (V_{GS} - V_{TH(n)} - (V_{DS}/2)) V_{DS}$$

Saturation Mode

Occurs when V_{GS} > $V_{TH(n)}$ and V_{DS} ≥ $~V_{GS}$ - $V_{TH(n)}$

$$I_{D} = \frac{W}{L} \mu_{n} C_{OX} \frac{1}{2} (V_{GS} - V_{TH(n)})^{2} (1 + \lambda_{n} V_{DS})$$

PMOS (P-Channel Metal Oxide Semiconductor) Transistor

Same as NMOS, only p-type and n-type switched

PMOS Transistor Channel $V_{GS} < V_{TH(p)} < 0$ gate source • • drain metal oxide insulator metal metal p-type /h⊕h⊕h⊕h⊕h⊕ p-type $\Theta \Theta \Theta$ $\Theta \Theta \Theta$ n-type e e е е е е е e e metal

When V_{GS} is more negative than a **threshold** voltage $V_{TH(p)}$, the gate attracts many positive ions and holes (repels electrons)

Thus the applied V_{GS} creates an **induced p-type channel** under the gate (an area with positive ions).

PMOS Transistor Drain Current

When a negative V_{DS} is applied, the positive ions flow from the source to the drain. (Positive current flows from source to drain).

The amount of current depends on V_{DS} , as well as the number of ions in the channel, channel dimensions, and material.

PMOS Transistor Circuit Symbol

- Symbol has "dot" at gate. NMOS does not.
- □ I_D, V_{GS}, V_{DS}, and V_{TH(p)} are all negative. These values are positive for NMOS.
- **Channel formed when V_{GS} < V_{TH(p)}. Opposite for NMOS.**
- □ Saturation occurs when $V_{DS} \le V_{GS} V_{TH(p)}$. Opposite for NMOS.

PMOS I-V Curves

PMOS Equations

Cutoff Mode Occurs when $V_{GS} \ge V_{TH(p)}$

 $I_{D} = 0$ Triode Mode Occurs when V_{GS} < V_{TH(p)} and V_{DS} > V_{GS} - V_TH(p)

$$I_{D} = -\frac{W}{L} \mu_{p} C_{OX} (V_{GS} - V_{TH(p)} - (V_{DS}/2)) V_{DS}$$

Saturation Mode Occurs when $V_{GS} < V_{TH(p)}$ and $V_{DS} \le V_{GS}$ - $V_{TH(p)}$

$$D = -\frac{W}{L}\mu_{p}C_{OX}\frac{1}{2}(V_{GS} - V_{TH(p)})^{2}(1 + \lambda_{p}V_{DS})$$

Solving Transistor Circuits

- Guess the transistor mode (for each transistor).
 - Sometimes you can make educated guess
- Write down the I-V relationships that go with those modes: 1 equation, 3 unknowns (I_D, V_{DS}, V_{GS}) for each transistor
- Write down KVL and KCL equations (enough so that we can solve for the 3 unknowns)
- Check values of I_D, V_{DS}, V_{GS} do they agree with mode?
- □ If yes, done. Else, start over with new guess.