Lecture 16

Today we will

- Learn how to solve diode circuits
- Become proficient in the application of the different diode I-V models
- Gain experience "guessing" the correct diode mode for faster analysis

Notes on Use of Models

- Most of the diode models are piecewise defined:
 - One function for reverse bias
 - Another for forward bias
- You will need to:
 - $\, \odot \,$ "Guess" that diode is reverse (or forward) biased
 - Solve for V, I according to your guess
 - $\, \odot \,$ If this results in an impossibility, guess again
- Rarely, both guesses may lead to impossibility.
 - O Use a more detailed model

Example 1: Ideal Diode Model

Find I_D and V_D using the1 k Ω ideal diode model. $\checkmark \lor \lor \lor$

2 V

Forward bias

 V_{D}

- Is the diode reverse biased or forward biased?
- Make a guess, substitute corresponding circuit for diode.
 Reverse bias
- "Reality check" answer to see if we need to re-guess.

Guessing the Diode Mode: Graphing

• Look at the diode circuit as a Thevenin equivalent linear circuit attached to a diode.

- Graph the diode I-V curve and the linear circuit I-V curve on the same graph, both in terms of I_D and V_D.
- This means draw the diode I-V curve normally, and draw the linear I-V curve flipped vertically (I_L = -I_D).
- See where the two intersect—this gives you I_D and V_D.

Guessing the Diode Mode: When in Doubt...

- It's generally easier to guess reverse bias since it is easy to check.
- No matter what piecewise model we use, reverse bias is always open circuit.
- So when you don't know what to do, put in open circuit for the diode, and see if it violates reverse bias conditions (zero current, negative voltage).

Example 1: Ideal Diode Model

- Guess reverse bias: • Since no current is flowing, $1 k\Omega$ VV+ 2 V+ VD
- V_D = 2 V (by KVL)
 This is impossible for reverse bias (must have negative V_D)
- So the diode must be forward biased

Example 2: Large-Signal Diode Model

- Use the large-signal diode model with $V_F = 0.7$ to find I_D and V_D .
- To be in forward bias mode, the diode needs 0.7 V.
 0.5 V

- The source only provides 0.5 V.
- The resistor cannot add to the voltage since the diode could only allow current to flow clockwise.
- Reverse bias => open circuit => I_D = 0 A, V_D = 0 V

Example 3: Large-Signal Diode Model

• Use the large-signal diode model with $V_F = 0.7$ to find I_D and V_D .

Example 4: Large-Signal Diode Model

• Use the large-signal diode model with $V_F = 0.7$ to find V_X .

Example 5: Ideal Diode Model

Use the ideal diode model to find V_X.

Example 6: Realistic Diode Model

• Using the realistic diode model with $I_0 = 10^{-6}$ A and $V_T = 0.026$ V, compute I_D and V_{OUT} .

