
Lecture 14

Today we will
� Learn how to implement mathematical logical functions

using logic gate circuitry, using
� Sum-of-products formulation
� NAND-NAND formulation

� Learn how to simplify implementation using
� Boolean algebra
� Karnaugh maps

Logic Gates

A

B
C=A·BAND C =

A

B
NAND BA⋅

NOR
A
B

BA+

A A

OR
A
B

C=A+B

(EXCLUSIVE OR)

A
B

BAC ⊕=NOT XOR

Properties of Logic Functions

� These new functions, AND, OR, etc., are mathematical
functions just like +, -, sin(), etc.

� The logic functions are only defined for the domain
{0, 1} (logic functions can only have 0 or 1 as inputs).

� The logic functions have range {0, 1} (logic functions
can only have 0 or 1 as outputs)

� AND acts a lot like multiplication.
� OR acts a lot like addition.
� Learn the properties so you can simplify equations!

Properties of Logic Functions

A + 0 = A A • 1 = A

A + A = 1 A • A = 0

A + A = A A • A = A

A + B = B + A A • B = B • A

A + (B + C) = (A + B) + C (A • B) • C = A • (B • C)

A • (B + C) = A • B + A • C A + B • C = (A + B) • (A + C)

A + A • B = A A • (A + B) = A

DeMorgan’s Law: A • B = A + B

A • B = A + B

De Morgan’s Law
A • B = A + B

A • B = A + B

A

B
BA⋅

A BA+

B

A

B

BA+ A BA⋅

B

=

=

Logical Synthesis

� Suppose we are given a truth table or Boolean
expression defining a mathematical logic function.

� Is there a method to implement the logical function
using basic logic gates?

� One way that always works is the “sum of products”
formulation. It may not always be the best
implementation for a particular purpose, but it works.

Sum-of-Products Method

1. Create a Boolean expression for the function in sum-of-
products form.
This means represent the function F by groups of ANDed inputs
(products) that are then ORed together (sum of products).

F = A·B·C + A·B·D is in sum-of-products form
F = A·B·(C + D) is not in sum-of-products form

� How to get to sum-of-products form?
� Use properties to manipulate given Boolean equation
� Look at each “1” in truth table, write product of inputs that

creates this “1”, OR them all together

Sum-of-Products Method

2. Implement sum-of-products expression with one stage
of inverters, one stage of ANDs, and one big OR:

F = A·B·C + A·B·D

A

B

C

A

B

D

F

Example (Adder)

01110
10001
01101
01011

1

0
0
0
S1

1

0
1
0
C

1

0
0
0
A

1

1
0
0
B

1

1
1
0
S0

Input Output

S1 using sum-of-products:

1) Find where S1 is “1”

2) Write down product of inputs
which create each “1”

3) Sum all products

4) Draw circuit

A B C A B C

A B C A B C

A B C + A B C + A B C + A B C

S1 using sum-of-products:

1) Find where S1 is “1”

2) Write down product of inputs
which create each “1”

3) Sum all products

4) Draw circuit

A B C A B C

A B C

NAND-NAND Implementation

� We can easily turn our sum-of-products circuit into one
that is made up solely of NANDs (generally cheaper):

A

B

C

A

B

D

F

Karnaugh Maps
To find a simpler sum-of-products expression,
Write the truth table of your circuit into a special table.

For each “1”, circle the biggest 2m by 2n block of “1’s” that includes
that particular “1”.
Write the product that corresponds to that block, and finally sum.

1
0

10

10
11
01
00

10110100

1
0

10110100

A

BC

A

B

AB

CD

2 Inputs 3 Inputs
4 Inputs

Example (Adder)

01110
10001
01101
01011

1

0
0
0
S1

1

0
1
0
C

1

0
0
0
A

1

1
0
0
B

1

1
1
0
S0

Input Output

11101
01000

10110100

A

BC

Simplification for S1:

