- Lecture 14

Today we will

- Learn how to implement mathematical logical functions using logic gate circuitry, using
- Sum-of-products formulation
- NAND-NAND formulation
- Learn how to simplify implementation using
- Boolean algebra
- Karnaugh maps
- Logic Gates

- Properties of Logic Functions
- These new functions, AND, OR, etc., are mathematical functions just like,+- , $\sin ()$, etc.
- The logic functions are only defined for the domain $\{0,1\}$ (logic functions can only have 0 or 1 as inputs).
- The logic functions have range $\{0,1\}$ (logic functions can only have 0 or 1 as outputs)
- AND acts a lot like multiplication.
- OR acts a lot like addition.
- Learn the properties so you can simplify equations!

Properties of Logic Functions

$$
\begin{array}{ll}
A+0=A & A \cdot 1=A \\
A+\bar{A}=1 & A \cdot \bar{A}=0 \\
A+A=A & A \cdot A=A \\
A+B=B+A & A \cdot B=B \cdot A \\
A+(B+C)=(A+B)+C & (A \cdot B) \cdot C=A \cdot(B \cdot C) \\
A \cdot(B+C)=A \cdot B+A \cdot C & A+B \cdot C=(A+B) \cdot(A+C) \\
A+A \cdot B=A & A \cdot(A+B)=A \\
\text { DeMorgan's Law: } & \overline{A \cdot B}=\bar{A}+\bar{B} \\
& \bar{A} \cdot \bar{B}=\overline{A+B}
\end{array}
$$

- De Morgan's Law
$\overline{\mathrm{A} \cdot \mathrm{B}}=\overline{\mathrm{A}}+\overline{\mathrm{B}}$
$\bar{A} \cdot \bar{B}=\overline{A+B}$

$B \longrightarrow \overline{A+B}$

- How to get to sum-of-products form?
- Use properties to manipulate given Boolean equation
- Look at each "1" in truth table, write product of inputs that creates this " 1 ", OR them all together

- - \quad Sum-of-Products Method

1. Create a Boolean expression for the function in sum-ofproducts form.
This means represent the function \mathbf{F} by groups of ANDed inputs (products) that are then ORed together (sum of products).
$\begin{array}{ll}F=A \cdot B \cdot C+A \cdot B \cdot D & \text { is in sum-of-products form } \\ F=A \cdot B \cdot(C+D) & \text { is not in sum-of-products form }\end{array}$

- - Logical Synthesis

- Suppose we are given a truth table or Boolean expression defining a mathematical logic function. - Is there a method to implement the logical function using basic logic gates?
- One way that always works is the "sum of products" formulation. It may not always be the best implementation for a particular purpose, but it works.

Sum-of-Products Method

2. Implement sum-of-products expression with one stage of inverters, one stage of ANDs, and one big OR:

Example (Adder)

A	B	C	S_{1}	S_{0}
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1
Input				
	Output			

S_{1} using sum-of-products:

1) Find where S_{1} is " 1 "
2) Write down product of inputs which create each " 1 "

ABC ABC
ABC $\bar{C} \quad$ BC
3) Sum all products
$A B C+A B C+A B C+A B C$
4) Draw circuit

NAND-NAND Implementation

- We can easily turn our sum-of-products circuit into one that is made up solely of NANDs (generally cheaper):

Karnaugh Maps

To find a simpler sum-of-products expression,
Write the truth table of your circuit into a special table.

2 Inputs

3 Inputs

4 Inputs

For each " 1 ", circle the biggest 2 m by 2 n block of " 1 ' s " that includes that particular " 1 ".
Write the product that corresponds to that block, and finally sum.

Example (Adder)

Simplification for S_{1} :

A	B	C	S_{1}	$\mathrm{~S}_{0}$
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1
Input				
	Output			

	$\mathbf{0 0}$	$\mathbf{0 1}$	$\mathbf{1 1}$	$\mathbf{1 0}$
$\mathbf{0}$	0	0	1	0
$\mathbf{1}$	0	1	1	1

