• • Lecture 13

Today we will

- Examine how the logic gate model (RC circuit) reacts to a sequence of input changes
- Relate these results to clocking speed
- Define propagation delay
- o Introduce digital logic gates
- o Examine how signals propagate through logic circuits

Sequential Switching

- What if we step up the input to a logic circuit,
- o wait for the output to respond,
- then bring the input back down to perform the next computation?

Example

- Suppose that the capacitor is discharged at t=0.
- With $V_{in}(t)$ as shown, find $V_{out}(t)$.

Example

- First, V_{out}(t) will approach 4 V exponentially.
- We write the equation for this part using:
 - Initial condition V_{out}(0) = 0 V
 - Final value V_{out,f} = 4 V
 - Time constant RC = $(2.5 \text{ k}\Omega)(1 \text{ nF}) = 2.5 \text{ }\mu\text{s}$

 $V_{out}(t) = V_{out,f} - (V_{out}(0) - V_{out,f})e^{-t/RC}$ $V_{out}(t) = 4 - 4e^{-t/2.5\mu s} V \text{ for } 0 \le t \le 5 \ \mu s$

Example

- o Then, at 5 μ s, V_{out}(t) will approach 0 V exponentially.
- We write the equation for this part using:
 - Initial condition V_{out}(5 μs) = ?
 Use equation from previous step, since V_{out} is continuous.

$$V_{out}(5\mu s) = 4-4e^{-5\mu s/2.5\mu s} = 3.44$$
 V
• Final value $V_{out,f} = 0$ V
• Time constant RC = (2.5 kΩ)(1 nF) = 2.5 μs

$$V_{out}(t) = V_{out,f} - (V_{out}(t_0) - V_{out,f})e^{-(t-t_0)/RC}$$

 $V_{out}(t) = 3.44e^{-(t-5\mu s)/2.5\mu s}$ for t > 5 µs

Design Issues

- How long between successive inputs?
 - Need output to reach recognizable logic level
 - Output must be at this level long enough to serve as input to next logic gate
- How many consecutive logic gates does signal go through before being "cleaned up" or saved in static memory cell?
 - Eventually the signal gets really bad
 - But adding hardware adds cost and delay

Propagation Delay

- Suppose an input goes from some initial voltage to some final voltage.
- In our examples, the input switch is immediate, but in practice it is not.
- Propagation delay is officially defined as: (time when output is halfway to final value) minus (time when input is halfway to final value)

Using our equation for $V_{out}(t)$, we can find:

 $t_{P,HL}$ (time when V_{out}(t) = 2 V, as it goes from 0 V to 4 V) – 0 s

t_{P,LH} (time whe

(time when V_{out}(t) = 1.72 V, as it goes from 3.44 V to 0 V) $-5 \,\mu$ s

• Propagation Delay

• It's not a coincidence that the propagation delays were the same. • For a general RC circuit that has an input voltage switch at $t = t_0$, $V_{out}(t) = V_{out,f} - (V_{out}(t_0) - V_{out,f})e^{-(t-t_0)/RC}$ • The time when $V_{out}(t)$ is $\frac{1}{2}(V_{out,f} + V_{out}(t_0))$ is given by $\frac{1}{2}(V_{out,f} + V_{out}(t_0)) = V_{out,f} - (V_{out}(t_0) - V_{out,f})e^{-(t-t_0)/RC}$ • Simplifying, $\frac{1}{2} = e^{-(t-t_0)/RC}$ $t = (\ln 2)(RC) + t_0$ • The propagation delay, the difference between this time and t_0 , is $t_P = (\ln 2)(RC)$ Depends only on time constant!

Graphing Propagation through Multiple Logic Gates

- We will want to examine how these RC-related delays affect a signal going through multiple logic gates.
- The math involved in putting an RC output (decaying exponential) into another RC circuit is not so easy.
- So, when analyzing a circuit with many logic gates, we will use the following simplification:

Cogic Gates

- We have been using a simple RC circuit to model a logic gate.
- ${\rm o}$ In each case, the final value of ${\rm V}_{\rm out}$ was ${\rm V}_{\rm in}.$
- This will not always be true; sometimes, the output will go to logic 0 when the input is logic 1 and vice-versa.
- To determine what the final value of a logic gate output will be, we need to learn the types of logic gates.

Logic Functions: Truth Tables

We specify what a logic circuit does by listing the output for each possible input. This listing is called a **truth table**.

А	В	A∙B	A·B
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0
			ΝΔΝΠ

• • Logic Functions: Truth Tables

1	1	1	0
1	0	1	0
0	1	1	0
0	0	0	1
А	В	A+B	A+B

		XOR	XNOR
1	1	0	1
1	0	1	0
0	1	1	0
0	0	0	1
А	В	A⊕B	$\overline{A \oplus B}$

Timing Diagrams

- Now let's look at how signals propagate through logic gates, taking delay into consideration.
- Sketch the output for each logic gate in a more complicated circuit.

• Strategy for Timing Diagrams

To find the output for a particular gate,

- Graph the inputs for that gate
- Graph the result of the logic gate using the input graphs
- Shift right by one t_P

