
Lecture 11

Today we will learn about capacitors
� what they are
� I-V relationship
� their role in the modeling of digital circuits
� how to analyze simple RC circuits

Computation with Voltage

When we perform a sequence of computations using a digital 
circuit, we switch the input voltages between logic 0 and logic 1.

The output of the digital circuit fluctuates between logic 0 and
logic 1 as computations are performed.



RC Circuits

Every node in a circuit has natural capacitance, and it is the 
charging of these capacitances that limits real circuit performance 
(speed)

We compute with pulses 

We send beautiful pulses in

But we receive lousy-looking 
pulses at the output

Capacitor charging effects are responsible!
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The Capacitor

� The parallel-plate capacitor is made of two metallic 
plates separated by an insulator such as air.
� Electrons can be ripped off of one plate and 
transferred to the other, leaving both plates with a 
nonzero net charge.
� This creates a voltage between the plates.
� The relationship between amount of separated 
charge and voltage is the capacitor’s defining 
equation:

Q = C V where Q is the amount of charge on the 
top plate, V is the voltage drop from top to bottom 
plate, and C is the capacitance of the capacitor.
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Stored Charge

� So far, we have assumed that electrons keep on moving around 
and around a circuit.

� Current doesn’t really “flow through” a capacitor.  No electrons 
can go through the insulator.

� But, we say that current flows “through” a capacitor.  What we 
mean is that positive charge collects on one plate and leaves 
the other.

� A capacitor stores charge.  Theoretically, if we did a KCL 
surface around one plate, KCL could fail.  But we don’t do that.

� When a capacitor stores charge, it has nonzero voltage.  In this
case, we say the capacitor is “charged”.  A capacitor with zero 
voltage has no charge differential, and we say it is “discharged”.

I-V Relationship

� We said that Q = C V
where Q is the amount of charge on the top 
plate, V is the voltage drop from top to bottom 
plate, and C is the capacitance of the capacitor.

� Taking the time derivative of both sides,

� Remembering the definition of current,
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RC Circuit Model

The capacitor is used to model the response of a digital circuit to a 
new voltage input:

The digital circuit is modeled by 
a resistor in series with a capacitor.  

The capacitor cannot
change its voltage instantly,
as charges can’t teleport instantly
to the other plate.  
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Digital Circuit

RC Circuit Model

Every digital circuit has natural resistance and capacitance.  In 
real life, the resistance and capacitance can be estimated using
characteristics of the materials used and the layout of the physical 
device.  

The value of R and C
for a digital circuit
determine how long it will
take the capacitor to change its
voltage—the gate delay.
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Digital Circuit



RC Circuit Model

With the digital context in 
mind, Vin will usually be a 
time-varying voltage that 
switches instantaneously 
between logic 1 voltage and 
logic 0 voltage.  

We often represent this 
switching voltage with a 
switch in the circuit diagram.
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Analysis of RC Circuit

� By KVL,

� Using the capacitor I-V relationship,

� We have a first-order linear nonhomogeneous
differential equation, with characteristic equation root
-1/(RC).
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Analysis of RC Circuit

� What does that mean?
� One could solve the

differential equation using
Math 54 techniques to get

Vout
R

CVin Vout
+
_

+

_
I

( ) )RC/(teinV)0(outVinV)t(outV −−+=

Insight

� Vout(t) starts at Vout(0) and goes to Vin asymptotically.
� The difference between the two values decays exponentially.
� The rate of convergence depends on RC.  The bigger RC is, the 

slower the convergence.
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Time Constant

� The value RC is called the time constant.
� After 1 time constant has passed (t = RC), the above works out to:

� So after 1 time constant, Vout(t) has completed 63% of its 
transition, with 37% left to go. 

� After 2 time constants, only 0.372 left to go.
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Transient vs.
Steady-State

� When Vin does not match up with Vout , due to an abrupt 
change in Vin for example, Vout will begin its transient period
where it exponentially decays to the value of Vin.

� After a while, Vout will be close to Vin and be nearly constant.  
We call this steady-state.

� In steady state, the current through the capacitor is (approx) 
zero.  The capacitor behaves like an open circuit in 
steady-state.

� Why?  I = C dVout/dt, and Vout is constant in steady-state.
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General RC Solution

� Every current or voltage (except the source voltage) in 
an RC circuit has the following form:

� x  represents any current or voltage
� t0 is the time when the source voltage switches
� xf is the final (asymptotic) value of the current or voltage
All we need to do is find these values and plug in to solve 
for any current or voltage in an RC circuit.
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Solving the RC Circuit

We need the following three ingredients to fill in our 
equation for any current or voltage:

� x(t0+)   This is the current or voltage of interest just after 
the voltage source switches.  It is the starting point of our 
transition, the initial value.
� xf This is the value that the current or voltage 
approaches as t goes to infinity.  It is called the final value.
� RC  This is the time constant.  It determines how fast the 
current or voltage transitions between initial and final value.



Finding the Initial Condition

To find x(t0+), the current or voltage just after the switch, we use 
the following essential fact:

Capacitor voltage is continuous; it cannot jump when a 
switch occurs.

So we can find the capacitor voltage VC(t0+) by finding VC(t0-), 
the voltage before switching.

We can assume the capacitor was in steady-state before 
switching.  The capacitor acts like an open circuit in this case, and 
it’s not too hard to find the voltage over this open circuit.

We can then find x(t0+) using VC(t0+) using KVL or the capacitor I-V 
relationship.  These laws hold for every instant in time.

Finding the Final Value

To find xf , the asymptotic final value, we assume that the circuit will 
be in steady-state as t goes to infinity.

So we assume that the capacitor is acting like an open circuit. We 
then find the value of current or voltage we are looking for using this 
open-circuit assumption.

Here, we use the circuit after switching along with the open-circuit 
assumption.

When we found the initial value, we applied the open-circuit 
assumption to the circuit before switching, and found the capacitor 
voltage which would be preserved through the switch.



Finding the Time Constant

It seems easy to find the time constant:  it equals RC.

But what if there is more than one resistor or capacitor?

R is the Thevenin equivalent resistance with respect to the 
capacitor terminals.
Remove the capacitor and find RTH.  It might help to turn off the 
voltage source.  Use the circuit after switching.

We will discuss how to combine capacitors in series and in parallel 
in the next lecture.

Alternative Method

Instead of finding these three ingredients for the generic 
current or voltage x, we can
� Find the initial and final capacitor voltage (it’s easier)
� Find the time constant (it’s the same for everything)
� Form the capacitor voltage equation VC(t)
� Use KVL or the I-V relationship to find x(t)


