Correction to Answer for Common-Source Amplifier Example

Part (f): This problem was a bit "trickier" than originally intended!
For $R_{D}=25 \mathrm{k} \Omega$, the MOSFET would be operating in the linear region, with $v_{D S}=v_{\text {OUT }}=$ 0.5 V . (This is obtained by load-line analysis, i.e. carefully sketching the $i_{D}-v_{D S}$ curve for $v_{G S}=3 \mathrm{~V}$, then sketching the load line, then finding the value of $v_{D S}$ at the point where these curves intersect.) The formula for g_{m} is then

$$
\begin{aligned}
\left.g_{m} \equiv \frac{\partial i_{D}}{\partial v_{G S}}\right|_{v_{G S}=3 V} & =\frac{\partial}{\partial v_{G S}}\left[k^{\prime} \frac{W}{L}\left(v_{G S}-V_{T}-\frac{v_{D S}}{2}\right) v_{D S}\right] \|_{v_{G S}=3 V} \\
& =k^{\prime} \frac{W}{L} v_{D S}=50 \times 10^{-6}(3)(0.5)=7.5 \times 10^{-5} S
\end{aligned}
$$

The small-signal equivalent circuit for the amplifier is

From this circuit, it can be seen that the incremental change in the output voltage, $v_{o u t}$, is simply $-g_{\underline{m}} v_{g s} R_{D}=-\left(7.5 \times 10^{-5}\right)(0.1)(25000)=0.1875 \mathrm{~V}$. This is larger than the value of 0.15 V which we obtained for $R_{D}=5 \mathrm{k} \Omega$.

RL Circuit Answer

$t<0: v=2 \mathrm{~V}$
$t>0: v=10-8 \mathrm{e}^{-1000 t}$
(Note that v is a continuous function of time, because the current flowing through the inductor is a continuous function of time.)

RC Circuit Answer

$t<0: v=0 \mathrm{~V}$
$t>0: v=-1.5 \mathrm{e}^{-100 t}$ Volts
(Note that v is discontinuous at $t=0$.)

Diode Circuit \#1 (left) Answer

D1 is $\mathrm{ON}\left(V_{D I}=0, I_{D I}>0\right.$; i.e. short circuit with positive current flow)
D 2 is $\operatorname{OFF}\left(V_{D 2}<0, I_{D 2}=0\right.$; i.e. open circuit with negative voltage drop)
$V=6 \mathrm{~V} ; I=6 \mathrm{~mA}$

Diode Circuit \#2 (right) Answer

D1 is $\mathrm{ON}\left(V_{D I}=0, I_{D I}>0\right.$; i.e. short circuit with positive current flow)
D 2 is $\operatorname{OFF}\left(V_{D 2}<0, I_{D 2}=0\right.$; i.e. open circuit with negative voltage drop)
$V=10 \mathrm{~V} ; I=0$

