Correction to Answer for Common-Source Amplifier Example

Part (f): This problem was a bit "trickier" than originally intended!

For $R_D = 25 \text{ k}\Omega$, the MOSFET would be operating in the *linear region*, with $v_{DS} = v_{OUT} = 0.5 \text{ V}$. (This is obtained by load-line analysis, *i.e.* carefully sketching the i_D - v_{DS} curve for $v_{GS} = 3 \text{ V}$, then sketching the load line, then finding the value of v_{DS} at the point where these curves intersect.) The formula for g_m is then

$$g_{m} = \frac{\partial i_{D}}{\partial v_{GS}} \Big|_{v_{GS}=3V} = \frac{\partial}{\partial v_{GS}} \left[k' \frac{W}{L} \left(v_{GS} - V_{T} - \frac{v_{DS}}{2} \right) v_{DS} \right] \Big|_{v_{GS}=3V} = k' \frac{W}{L} v_{DS} = 50 \times 10^{-6} (3)(0.5) = 7.5 \times 10^{-5} S$$

The small-signal equivalent circuit for the amplifier is

From this circuit, it can be seen that the incremental change in the output voltage, v_{out} , is simply $-g_m v_{gs} R_D = -(7.5 \times 10^{-5})(0.1)(25000) = 0.1875 \text{ V}$. This is larger than the value of 0.15 V which we obtained for $R_D = 5 \text{ k}\Omega$.

RL Circuit Answer

t < 0: v = 2 V t > 0: $v = 10 - 8e^{-1000t}$ (Note that v is a continuous function of time, because the current flowing through the inductor is a continuous function of time.)

RC Circuit Answer

 $\overline{t < 0: v = 0 V}$ $t > 0: v = -1.5e^{-100t}$ Volts (Note that v is discontinuous at t = 0.)

Diode Circuit #1 (left) Answer

D1 is ON $(V_{D1} = 0, I_{D1} > 0; i.e.$ short circuit with positive current flow) D2 is OFF $(V_{D2} < 0, I_{D2} = 0; i.e.$ open circuit with negative voltage drop) V = 6 V; I = 6 mA

Diode Circuit #2 (right) Answer

D1 is ON ($V_{D1} = 0$, $I_{D1} > 0$; *i.e.* short circuit with positive current flow) D2 is OFF ($V_{D2} < 0$, $I_{D2} = 0$; *i.e.* open circuit with negative voltage drop) V = 10 V; I = 0