UNIVERSITY OF CALIFORNIA AT BERKELEY
 College of Engineering
 Dept. of Electrical Engineering and Computer Sciences

Homework Assignment \#9

Due at 11:00 AM in 240 Cory on Friday, 11/14/03

* Be sure to put your Discussion Section number on your paper; otherwise 5 pts will deducted from your score!

Problem 1: Inverter Circuits and Noise Margins

a) Describe qualitatively how an NMOS inverter circuit (below left) works. Explain how relatively large noise margins $\boldsymbol{N} \boldsymbol{M}_{\boldsymbol{H}}$ and $\boldsymbol{N} \boldsymbol{M}_{\boldsymbol{L}}$ can be achieved. (Refer to Slide 6 of Lecture 26 for the definitions of $\boldsymbol{N} \boldsymbol{M}_{\boldsymbol{H}}$ and $\boldsymbol{N} \boldsymbol{M}_{\boldsymbol{L}}$).
b) Describe qualitatively how a CMOS inverter (below right) works. What are its advantages (with respect to noise margins, power consumption, and size) as compared with the NMOS inverter?

Problem 2: CMOS Logic Gates

(Read: pp. 199-202 of Section 6.2.1, Rabaey et al.)
A static CMOS logic gate is a combination of two networks: a pull-up network of PMOS transistors, and a pull-down network of NMOS transistors. The pull-up network provides a connection between the output and the power-supply $V_{D D}$ anytime the output of the logic gate is meant to be $\mathbf{1}$ (based on the inputs). The pull-down network provides a connection between the output and GND anytime the output of the logic gate is meant to be $\mathbf{0}$ (based on the inputs). Remember that NMOS devices are turned on with a high (logic 1) input voltage, whereas PMOS devices are turned on with a low (logic $\mathbf{0}$) input voltage, and that transistors connected in series correspond to an AND function, whereas transistors connected in parallel correspond to an OR function. (Refer to Slides 5 \& 6 of Lecture 27.)

Design a complex CMOS logic gate to implement the function $\mathbf{F}=\overline{(\mathbf{A}+\mathbf{B} \cdot \mathbf{C})}$

Problem 3: Combinational Logic Circuits

a) Write the truth table for the following Boolean expression: $\mathbf{F}=\overline{(\mathbf{A}+\mathbf{B} \cdot \mathbf{C})}$. Draw a logic circuit to realize this expression using AND, OR, and NOT gates.
b) Consider the following logic circuit:

i) Write the Boolean expression for \mathbf{F}.
ii) Suppose the values of the four input variables A B C D as a function of time are as shown in the timing diagram below. Draw \mathbf{F} as a function of time.

Problem 4: Logic Circuit Synthesis

Consider the adder circuit whose truth table is given in Slide 8 of Lecture 29.
a) Write a "sum-of-products" expression for the sum bit $\mathbf{S}_{\mathbf{0}}$.
b) Simplify this logical expression (using either the method used to simplify the expression for \mathbf{S}_{1} in class on 11/7, or a Karnaugh map).
c) Draw the logic circuit for $\mathbf{S}_{\mathbf{0}}$ using only NAND gates.

