EECS 40

Fall 2003

Homework Assignment #8

Due at 11:00 AM in 240 Cory on Friday, 10/31/03

* Be sure to put your Discussion Section number on your paper; otherwise 5 pts will deducted from your score!

Problem 1: MOSFET subthreshold leakage

For a MOSFET operating in the subthreshold regime ($V_{GS} < V_T$), the reduction in gate voltage needed to reduce the drain current by one decade is defined as the "subthreshold swing":

$S = n(kT/q)(ln \ 10)$

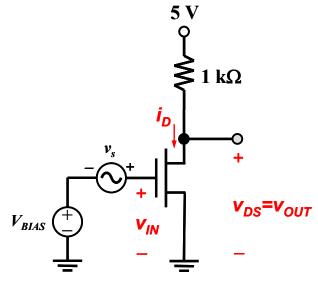
The units of *S* are mV/decade. A small value of *S* is desirable, because it allows a low OFF current (I_{DS} at $V_{GS} = 0$ V) to be achieved with a low threshold voltage (desirable for high ON current I_{DSAT}). Note that the smallest value of *S* attainable at room temperature (300K) is 60 mV/decade.

Consider an n-channel MOSFET for which the factor n = 1.15. The threshold voltage for this device is defined to V_{GS} at which the normalized drain current $I_{\text{D}}/(W/L)$ reaches 100 nA, with $V_{\text{DS}} = 100$ mV.

- a) Find S
- **b)** Suppose the leakage current must be less than 100 pA when $V_{GS} = 0$ V and $V_{DS} = 100$ mV, for W = L. What is the minimum threshold voltage this device can have?
- c) For ultralow-power technology (such as that used for memory chips used in portable electronic devices, *e.g.* cell phones) the leakage current requirement is much more stringent, typically less than 0.1 pA. Qualitatively, how would the transistor drive current (I_{DSAT}) for such a technology compare with that of the technology described in part (b)?

Problem 2: The MOSFET as a resistive switch

For digital circuit applications, the MOSFET can be modeled simply as a resistor in the ON state ($V_{GS} = V_{DD}$, the power-supply voltage). Its equivalent resistance in the ON state is


$$R_{eq} \cong \frac{3}{4} \frac{V_{DD}}{I_{DSAT}} \left(1 - \frac{5}{6} \lambda V_{DD} \right)$$

where I_{DSAT} is the drain saturation current and λ is the channel-length modulation parameter.

- a) Consider a long n-channel MOSFET (refer to Slide 8 of Lecture 25 for the appropriate I_{DSAT} equation) of dimensions $W = 100 \,\mu\text{m}$ and $L = 10 \,\mu\text{m}$, for which $k_n' = 50 \,\mu\text{A/V}^2$, $V_T = 0.7 \,\text{V}$, and $\lambda = 0$. Calculate its equivalent resistance in the ON state, for $V_{DD} = 5 \,\text{V}$.
- **b)** In general, a lower ON-state resistance (R_{eq}) is desirable for achieving faster circuit speed (*i.e.* lower propagation delay). Describe at least two approaches to lowering R_{eq} .
- c) Consider a very-short n-channel MOSFET (refer to Slide 11 of Lecture 25 for the appropriate I_{DSAT} equation) of dimensions $W = 1 \ \mu m$ and $L = 0.1 \ \mu m$, for which $C_{ox} = 2 \ \mu F/cm^2$, $V_T = 0.4 \ V$, and $\lambda = 0.1$. Calculate its equivalent resistance in the ON state, for $V_{DD} = 1 \ V$. Assume that the saturation velocity $v_{sat} = 10^7 \ cm/s$, and that the electron mobility $\mu_n = 300 \ cm^2/Vs$.

Problem 3: Common-source amplifier circuit

Consider the following amplifier circuit:

The n-channel MOSFET has dimensions $W = 20 \ \mu\text{m}$ and $L = 2 \ \mu\text{m}$, and $k_n' = 100 \ \mu\text{A/V}^2$, $V_T = 0.5 \ \text{V}$, and $\lambda = 0$.

- a) Sketch the $i_D vs. v_{DS}$ characteristics of the MOSFET to scale, for $v_{GS} = 1, 2, 3, 4$ and 5 V. Draw the load line on the $i_D vs. v_{DS}$ plot.
- **b)** Draw the voltage transfer function ($v_{OUT} vs. v_{IN}$).
- c) What is the optimal DC operating point ("Q point") for this circuit? (Specify the value for V_{BIAS} .) Estimate the open-circuit voltage gain $A_v = v_{out}/v_{in}$ for this operating point.