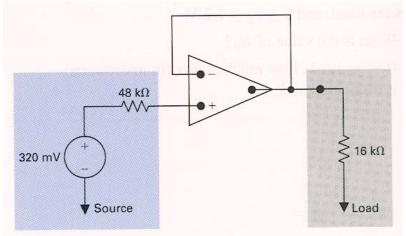
UNIVERSITY OF CALIFORNIA AT BERKELEY

College of Engineering

Dept. of Electrical Engineering and Computer Sciences

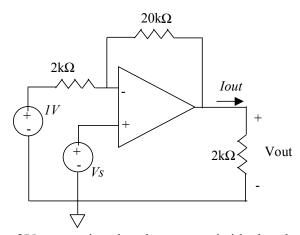
EECS 40 Fall 2003


Homework Assignment #4

Due at 11 AM in 240 Cory on Friday, 9/26/03

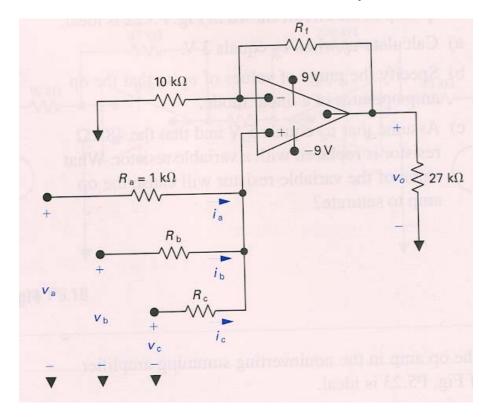
* Be sure to put your name and **Discussion Section number** on your paper; **otherwise 5 pts will deducted from your score!**

Problem 1: Voltage Follower

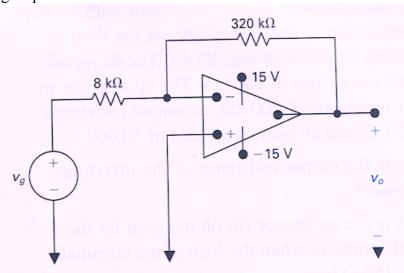

Assume that the ideal op amp in the circuit below is operating in its linear region.

- a) Calculate the power delivered to the 16 k Ω load resistor
- b) Repeat (a) with the op amp removed from the circuit, that is, with the 16 k Ω resistor connected directly in series with the voltage source and the 48 k Ω resistor.
- c) What is the ratio of the power found in (a) to that found in (b)?
- d) Does the insertion of the op amp between the source and the load serve a useful purpose? Explain.

Problem 2: Ideal Op Amp Circuit Analysis


Given the following circuit:

- a) Find V_{out} as a function of V_s, assuming that the op amp is ideal and operating in its linear region.
- **b)** Due to supply voltage limitations, $0V \le V_{out} \le 10V$. Plot V_{out} vs. V_s .


Problem 3: Non-Inverting Summing Amplifier Circuit Design

Assume the op amp in the circuit below is ideal and operating in the linear region. Design the circuit so that $v_o = 4v_a + 2v_b + v_c$. (Specify the numerical values of R_b , R_c , and R_f .)

Problem 4: Realistic Op Amp

Consider the inverting amplifier circuit below.

The op amp has input resistance $R_i = 400 \text{ k}\Omega$, output resistance $R_o = 2 \text{ k}\Omega$, open-loop gain A = 500,000. Assume that the op amp is operating in its linear region. Also suppose that the amplifier is loaded with a 1 k Ω resistor.

- a) Calculate the voltage gain (v_o/v_g) of the amplifier.
- **b)** Repeat (a) assuming the op amp is ideal.