EECS 40 Homework \#2 Solutions Fall 2003

Problem 1

c) Start off with what we know:

Bulb rated for power $=20 \mathrm{~W}$ and works with voltage supply $=12 \mathrm{~V}$ DC
Model our circuit as shown in the figure below:

- Voltage supply is modeled as an ideal independent voltage source supplying 12 V
- Light bulb is modeled as a resistor

Then $\mathrm{P}=\mathrm{VI}$ or $\mathrm{P}=\mathrm{V}^{2} / \mathrm{R} 20$ so solving for R20, we get $\mathrm{R} 20=\mathrm{V}^{2} / \mathrm{P}$ which implies:

$$
\mathrm{R} 20=144 / 20\left[(\mathrm{~J} / \mathrm{C})^{2} / \mathrm{J} / \mathrm{s}\right]=7.2[(\mathrm{~J} / \mathrm{C}) /(\mathrm{C} / \mathrm{s})]=7.2 \Omega
$$

Similarly, for a light bulb rated for 50W operation, R50 $=144 / 50[\mathrm{~V} / \mathrm{A}]=2.9 \Omega$
b)

Note that we have three resistors in series so $\mathrm{R}_{\mathrm{eq}}=3 \cdot \mathrm{R} 20=3 \times 7.2 \Omega=21.6 \Omega$.
Using KVL for the loop shown we get: $\mathrm{I} \cdot \mathrm{R}_{\mathrm{eq}}-12[\mathrm{~V}]=0$ which implies that:
$\mathrm{I}=12 / 21.6[\mathrm{~A}]=0.56 \mathrm{~A}$
Then $\mathrm{V}=\mathrm{IR} 20=0.56 \times 7.2[\mathrm{~A} \cdot \Omega]=4 \mathrm{~V}$ and the power dissipated in each bulb is given by: $\mathrm{P}=\mathrm{VI}=4 \times 0.56[\mathrm{~V} \cdot \mathrm{~A}]=2.2 \mathrm{~W}$
c) As in part b) we use KVL for the loop but replace the last resistance with a 50 W -rated bulb as shown in the figure of the problem. We get the following equation:
$7.2 \mathrm{I}+7.2 \mathrm{I}+2.9 \mathrm{I}[\Omega \cdot \mathrm{A}]-12[\mathrm{~V}]=0$ which implies $\mathrm{I}=0.7 \mathrm{~A}$, and
$\mathrm{V}=\mathrm{I}$-R50 $=0.7 \times 2.9=2 \mathrm{~V}$. The power dissipated in the 50 W -bulb is:
$\mathrm{P}=\mathrm{V} \cdot \mathrm{I}=2 \mathrm{~V} \cdot 0.7 \mathrm{~A}=1.4 \mathrm{~W}$

Problem 2

a) To find the voltage v_{y} we first need to find the current i1 and then perform KVL in loop 2. To find 11 , we perform KCL at node 1 and then use KVL in loop 1.

KCL at node 1: $\mathrm{i} \beta+29 \mathrm{i} \beta=\mathrm{i} 1$ which implies $\mathrm{i} 1=30 \mathrm{i} \beta$
KVL at loop 1: $\mathrm{i} \beta \times 10[\mathrm{k} \Omega]-0.8[\mathrm{~V}]+30 \mathrm{i} \beta \times 200[\Omega]-15.2[\mathrm{~V}]=0$ which gives

$$
16000[\Omega] \times \text { i } \beta=16[\mathrm{~V}] \text { which implies } i \beta=1 \mathrm{~mA}
$$

KVL at loop 2: $30[\mathrm{~mA}] \times 200[\Omega]-25[\mathrm{~V}]+29[\mathrm{~mA}] \times 500[\Omega]+\mathrm{v}_{\mathrm{y}}=0$ which gives $6-25+14.5+v_{y}=0$ which implies $v_{y}=4.5 \mathrm{~V}$
b)

Element	Power generated	Power absorbed
$10 \mathrm{k} \Omega$ resistor		$\mathrm{P}=\mathrm{I}^{2} \mathrm{R}: 1\left[\mathrm{~mA}^{2}\right] \times 10 \mathrm{k} \Omega=0.01 \mathrm{~W}$
200Ω resistor		$\mathrm{P}=\mathrm{I}^{2} \mathrm{R}: 30^{2}\left[\mathrm{~mA}^{2}\right] \times 200 \Omega=0.18 \mathrm{~W}$
500Ω resistor	$\mathrm{P}=\mathrm{I}^{2} \mathrm{R}: 29^{2}\left[\mathrm{~mA}^{2}\right] \times 500 \Omega=0.42 \mathrm{~W}$	
Dep. current source	$\mathrm{P}=\mathrm{IV}: 1 \mathrm{~mA} \times 15.2 \mathrm{~V}=0.015 \mathrm{~W}$	
15.2 V source	$\mathrm{P}=\mathrm{IV}: 1 \mathrm{~mA} \times 0.8 \mathrm{~V}=0.0008 \mathrm{~W}$	
0.8 V source	$\mathrm{P}=\mathrm{IV}: 29 \mathrm{~mA} \times 25 \mathrm{~V}=0.72 \mathrm{~W}$	
25 V source	$\mathbf{0 . 7 4} \mathbf{~ W}$	$\mathbf{0 . 7 4} \mathbf{~}$
TOTAL		

Problem 3

c) We know for any two resistances in parallel we have $R 1 \cdot R 2 / R 1+R 2$ (see equation 3.15 of textbook); if $R 1=R 2=R$ then the expression reduces to $R^{2} / 2 R$ which is equivalent to $R / 2$.
c) For n resistors of value R in parallel, we obtain the following: $1 / \operatorname{Req}=1 / R+1 / R+1 / R+\ldots+1 / R$ which implies that $1 / R e q=n / R$ or $\operatorname{Req}=R / n$.
c) We need an equivalent resistance of $5.5 \mathrm{k} \Omega$ using only $2 \mathrm{k} \Omega$ resistors. To get $0.5 \mathrm{k} \Omega$ we can put $42 \mathrm{k} \Omega$ resistances in parallel: Req $=2 / 4=0.5 \mathrm{k} \Omega$. Now we need to construct $5 \mathrm{k} \Omega$ circuit that we can put in series with the $0.5 \mathrm{k} \Omega$ circuit. This can be obtained by putting 2 $2 \mathrm{k} \Omega$ resistors in series to get $4 \mathrm{k} \Omega$ and $22 \mathrm{k} \Omega$ in parallel which can be put in series with the rest of the network. Our network is shown below; all the resistors shown are $2 \mathrm{k} \Omega$.

Problem 4

a)

KVL at loop 2: $30000 \times \mathrm{i} 2+120000 \times \mathrm{i} 2-75000 \times \mathrm{i} 1=0$ implies that $\mathrm{i} 1=2 \times \mathrm{i} 2$
Then KCL at node $\mathrm{a}: \mathrm{i}=\mathrm{i} 1+\mathrm{i} 2$ implies that $\mathrm{i}=3 \times \mathrm{i} 2$
KVL at loop 1: $25000 \times i+75000 \times i 1-240=0$ and substituting for $i 1$ and i in terms of $i 2$, we obtain $225 \times \mathrm{i} 2=240$ which implies $\mathrm{i} 2=1.07 \mathrm{~mA}$.

Then $\mathrm{v}_{\mathrm{o}}=\mathrm{i} 2 \times 120000=1.07 \mathrm{~mA} \times 120000=128 \mathrm{~V}$.

b)

Using the voltage divider formula, the voltage across the $75 \mathrm{k} \Omega$ resistor is given by: $(75 / 100) \times 240 \mathrm{~V}=180 \mathrm{~V}$. This implies that: $\mathrm{i}=180 / 75000=2.4 \mathrm{~mA}$.

Then the dependent voltage source is $75000 \times 2.4=180 \mathrm{~V}$. Using the voltage divider formula again for the second part of the circuit, v_{0} is given by $(120 / 150) \times(75000 \mathrm{xi})=144 \mathrm{~V}$.
c) It has no effect since the current $\mathrm{i} 1=0$.

Problem 5

First reduce the circuit given to the one below using series and parallel resistance rules. $2 R \| 2 R$ is simply R. Then R in series with R is $2 R .3 R \| 3 R$ is $3 R / 2$. $R \| 4 R$ is $4 R / 5$. Then $3 R / 2$ in series with $4 R / 5$ is $23 R / 10$. Then we obtain the $i 2$ in terms of i using the current divider rule: $i 2=i x$ $2 R /(2 R+23 R / 10)=20 i / 43$.

Then we use the current divider rule again for the portion of the circuit on the right shown below

So we get $\mathrm{i}^{*}=\mathrm{i} 2 \times 4 \mathrm{R} / 5 \mathrm{R}=(20 \mathrm{i} / 43) \times(4 / 5)=16 \mathrm{i} / 43$

