UNIVERSITY OF CALIFORNIA, BERKELEY
 College of Engineering

Dept. of Electrical Engineering and Computer Sciences
EECS 40
Fall 2003

Homework \#12 Solutions

Problem 1

Model for determining interconnect capacitiance:

Wire capacitance per unit length:

$$
c_{w i r e} \cong c_{p p}+c_{\text {fringe }}=\frac{w \varepsilon_{d i}}{t_{d i}}+\frac{2 \pi \varepsilon_{d i}}{\log \left(t_{d i} / H\right)} \quad w=W-\frac{H}{2}
$$

First calculate the resistance and capacitance of the wire:
$\mathrm{R}_{\text {wire }}=(\rho \mathrm{L}) /(\mathrm{HW})=(2.7 \mu \Omega-\mathrm{cm} \times \mathrm{L}) /\left(0.5 \times 10^{-4} \mathrm{~cm} \times 1 \times 10^{-4} \mathrm{~cm}\right)=540 \mathrm{~L}[\Omega / \mathrm{cm}]$
$\mathrm{w}=\mathrm{W}-\mathrm{H} / 2=1 \times 10^{-4} \mathrm{~cm}-0.5 \times 10^{-4} \mathrm{~cm} / 2=0.75 \times 10^{-4} \mathrm{~cm}$
$\mathrm{C}_{\text {wire_per_unit_length }}=\left[\left(0.75 \times 10^{-4} \mathrm{~cm} \times 3.45 \times 10^{-13} \mathrm{~F} / \mathrm{cm}\right) / 1 \times 10^{-4} \mathrm{~cm}\right]+$ $\left[\left(2 \times 3.14 \times 3.45 \times 10^{-13} \mathrm{~F} / \mathrm{cm}\right) / \log (1 / 0.5)\right]=7.46 \times 10^{-12} \mathrm{~F} / \mathrm{cm}$
$\mathrm{C}_{\text {wire }}=7.4597 \times 10^{-12} \times \mathrm{L}[\mathrm{F} / \mathrm{cm}]$
Model for determining propagation delay:

Equivalent resistance $R_{d r}$

Substituting in the values for all the components in the above equation we get:

The propagation delay of Inverter A is given by the equation above.
Substituting in the values for all the components in the above equation we get:
$\mathrm{t}_{\mathrm{p}}=0.69(10 \mathrm{k} \Omega)\left(3 \times 10^{-15} \mathrm{~F}\right)+0.69(10 \mathrm{k} \Omega+540 \mathrm{~L})\left(3 \times 10^{-15} \mathrm{~F}\right)+[0.69(10 \mathrm{k} \Omega)$
$+0.38(540 \mathrm{~L})] 7.4597 \times 10^{-12} \mathrm{x} \mathrm{L}$
$\mathrm{t}_{\mathrm{p}}=4.14 \times 10^{-11}+5.1473 \times 10^{-8} \times \mathrm{L}+1.5307 \times 10^{-9} \times \mathrm{L}^{2}$
We must solve for L using the following constraint:
interconnect delay $=0.5\left(\mathrm{t}_{\mathrm{p}}\right)$
$5.1472 \times 10^{-8} \times \mathrm{L}+1.5307 \times 10^{-9} \mathrm{x} \mathrm{L}^{2}=0.5\left(4.14 \times 10^{-11}+5.1475 \times 10^{-8} \times \mathrm{L}+1.53 \times 10^{-9} \mathrm{x}\right.$ L^{2})
$-2.07 \times 10^{-11}+2.5735 \times 10^{-8} \times \mathrm{L}+7.6537 \times 10^{-10} \times \mathrm{L}^{2}=0$
Solving for L yields: $\mathrm{L}=8.035 \times 10^{-3} \mathrm{~cm}=80.35 \mu \mathrm{~m}$.

Problem 2

For this problem we assume the simple parallel-plate model as we are told that fringingfield capacitance is negligible. The equation we use to calculate the wire capacitance is given on slide 6, lecture 37:
$C_{p p}=\frac{\varepsilon_{d i}}{t_{d i}} W L$
a) $\mathrm{R}_{\text {wirel }}=(\rho \mathrm{L}) /(\mathrm{HW})=\left(2.7 \mu \Omega-\mathrm{cm} \times 500 \times 10^{-4} \mathrm{~cm}\right) /\left(0.5 \times 10^{-4} \mathrm{~cm} \times 2 \times 10^{-4} \mathrm{~cm}\right)=13.5 \Omega$ $\mathrm{R}_{\text {wirel }}$ is much smaller than R_{dr} of Inverter A: $13.5 \Omega \ll 10 \mathrm{k} \Omega$
Hence $\left(\mathrm{R}_{\text {wirel }}+\mathrm{R}_{\mathrm{dr}}\right) \approx \mathrm{R}_{\mathrm{dr}}=10 \mathrm{k} \Omega$.
$\mathrm{C}_{\text {wire }}=\mathrm{C}_{\text {wire2 }}=\mathrm{C}_{\mathrm{pp}}=\left[\left(2 \times 10^{-4} \mathrm{~cm} \times 500 \times 10^{-4} \mathrm{~cm} \times 3.45 \times 10^{-13} \mathrm{~F} / \mathrm{cm}\right) / 1 \times 10^{-4} \mathrm{~cm}\right]=$ 34.5 fF
$\mathrm{C}_{\mathrm{C}}=\varepsilon_{\mathrm{di}} \times \mathrm{HxL} /$ spacing
$\mathrm{C}_{\mathrm{C}}=3.45 \times 10^{-13} \mathrm{~F} / \mathrm{cm} \times 0.5 \times 10^{-4} \mathrm{~cm} \times 500 \times 10^{-4} \mathrm{~cm} / 0.5 \times 10^{-4} \mathrm{~cm}$
$\mathrm{C}_{\mathrm{C}}=17.25 \mathrm{fF}$
$\mathrm{C}_{\mathrm{in} 2}=3 \mathrm{fF}$ from Problem 1.
$\mathrm{C}_{\text {out } 1}=3 \mathrm{fF}$ from Problem 1.
$\tau_{\mathrm{D}}=\left(\mathrm{C}_{\text {out1 }} \mathrm{R}_{\mathrm{dr}}\right)+\left(\mathrm{R}_{\text {wire1 }}+\mathrm{R}_{\text {dr }}\right)\left[\mathrm{C}_{\text {wire1 }}+\left(\mathrm{C}_{\text {wire2 }} \mathrm{C}_{\mathrm{C}}\right) /\left(\mathrm{C}_{\text {wire2 }}+\mathrm{C}_{\mathrm{C}}\right)+\mathrm{C}_{\text {in2 }}\right]$
$\tau_{\mathrm{D}} \approx 3 \mathrm{fF} \times 10 \mathrm{k} \Omega+10 \mathrm{k} \Omega[34.5 \mathrm{fF}+34.5 \mathrm{fF}(17.25 \mathrm{fF}) /(34.5 \mathrm{fF}+17.25 \mathrm{fF})+3 \mathrm{fF}]$
$\tau_{\mathrm{D}} \approx 0.52 \mathrm{~ns}$
c) $\tau_{\mathrm{D}}=\left(\mathrm{C}_{\text {out1 }} \mathrm{R}_{\mathrm{dr}}\right)+\left(\mathrm{R}_{\text {wire1 }}+\mathrm{R}_{\mathrm{dr}}\right)\left[\mathrm{C}_{\text {wirel }}+\mathrm{C}_{\mathrm{C}}+\mathrm{C}_{\text {in } 2}\right]$
$\tau_{\mathrm{D}} \approx 3 \mathrm{fF} \times 10 \mathrm{k} \Omega+10 \mathrm{k} \Omega(34.5 \mathrm{fF}+17.25 \mathrm{fF}+3 \mathrm{fF})$
$\tau_{\mathrm{D}} \approx 0.58 \mathrm{~ns}$

