HW #4 Due October 23 (Tuesday) in class 1. In this problem, you will calculate and plot the band diagram of an P-Al $_{0.4}$ Ga $_{0.6}$ As / i-GaAs / N-Al $_{0.4}$ Ga $_{0.6}$ As double heterojunction with $N_a=3x10^{17}~cm^{-3}$ and $N_d=3x10^{17}~cm^{-3}$. The GaAs is intrinsic. The thickness of the GaAs layer is $0.1\mu m$. Use the material properties listed in the Table below. | | Unit | GaAs | Al _x Ga _{1-x} As, 0 <x<0.45< th=""></x<0.45<> | |--------------------------------|----------------|-------|---| | Bandgap Energy | eV | 1.424 | 1.424 + 1.247x | | Electron Effective Mass | m_0 | 0.067 | 0.067 + 0.083x | | Hole Effective Mass | m_0 | 0.5 | 0.5 + 0.29x | | Dielectric Constant | ε ₀ | 13.1 | 13.1 – 3x | | Conduction Band Discontinuity | % | - | ΔE _C ~ 67% ΔE _g | | Valence Band
Discontinuity | % | - | ΔE _V ~ 33% ΔE _g | The conduction and valence band density of states are $$\begin{split} N_C &= 2 \left(\frac{\pi m_e^* k_B T}{2\pi^2 \hbar^2} \right)^{3/2} = 2.5 \times 10^{19} \left(\frac{m_e^*}{m_0} \cdot \frac{T}{300} \right)^{3/2} \\ N_V &= 2 \left(\frac{\pi m_h^* k_B T}{2\pi^2 \hbar^2} \right)^{3/2} = 2.5 \times 10^{19} \left(\frac{m_h^*}{m_0} \cdot \frac{T}{300} \right)^{3/2} \end{split}$$ - a. Calculate Fermi energy in each individual semiconductor. Find the contact potential (built-in potential), V₀. - b. Assume the depletion region on the P and the N sides are $-0.5\mu m x_P$ and $0.5\mu m + x_N$, respectively. We will solve for x_P and x_N later. Plot the charge distribution $\rho(x)$. What is the relation between x_P and x_N ? (*Hint: there is no charge in the i-region*). - c. Calculate and plot the electric field distribution E(x). Show the analytical expression. (*Hint: the electric field in the i-region should be constant*). - d. Calculate and plot the electron potential energy distribution, $-q\phi(x)$. Show the analytical expression. (*Hint: the electron potential energy varies linearly in the i-region*). - e. Equate the electron potential difference between the N- and the P-AlGaAs to the contact potential, V_0 , solve for x_P and x_N . - f. Now plot the entire band diagram quantitatively. - 2. Repeat Problem 1 for a forward bias voltage of 0.7V. You don't need to show all the detailed steps, just those you need to derive the final band diagram. Show the quasi-Fermi levels. - 3. Plot the electron and hole concentration distribution across the double heterojunction under the condition of Problem 2. Use logarithmic scale for the vertical axis as the concentration varies over a very large range when going from majority to minority side.