HW #4 Due October 23 (Tuesday) in class

1. In this problem, you will calculate and plot the band diagram of an P-Al $_{0.4}$ Ga $_{0.6}$ As / i-GaAs / N-Al $_{0.4}$ Ga $_{0.6}$ As double heterojunction with $N_a=3x10^{17}~cm^{-3}$ and $N_d=3x10^{17}~cm^{-3}$. The GaAs is intrinsic. The thickness of the GaAs layer is $0.1\mu m$. Use the material properties listed in the Table below.

	Unit	GaAs	Al _x Ga _{1-x} As, 0 <x<0.45< th=""></x<0.45<>
Bandgap Energy	eV	1.424	1.424 + 1.247x
Electron Effective Mass	m_0	0.067	0.067 + 0.083x
Hole Effective Mass	m_0	0.5	0.5 + 0.29x
Dielectric Constant	ε ₀	13.1	13.1 – 3x
Conduction Band Discontinuity	%	-	ΔE _C ~ 67% ΔE _g
Valence Band Discontinuity	%	-	ΔE _V ~ 33% ΔE _g

The conduction and valence band density of states are

$$\begin{split} N_C &= 2 \left(\frac{\pi m_e^* k_B T}{2\pi^2 \hbar^2} \right)^{3/2} = 2.5 \times 10^{19} \left(\frac{m_e^*}{m_0} \cdot \frac{T}{300} \right)^{3/2} \\ N_V &= 2 \left(\frac{\pi m_h^* k_B T}{2\pi^2 \hbar^2} \right)^{3/2} = 2.5 \times 10^{19} \left(\frac{m_h^*}{m_0} \cdot \frac{T}{300} \right)^{3/2} \end{split}$$

- a. Calculate Fermi energy in each individual semiconductor. Find the contact potential (built-in potential), V₀.
- b. Assume the depletion region on the P and the N sides are $-0.5\mu m x_P$ and $0.5\mu m + x_N$, respectively. We will solve for x_P and x_N later. Plot the charge distribution $\rho(x)$. What is the relation between x_P and x_N ? (*Hint: there is no charge in the i-region*).
- c. Calculate and plot the electric field distribution E(x). Show the analytical expression. (*Hint: the electric field in the i-region should be constant*).
- d. Calculate and plot the electron potential energy distribution, $-q\phi(x)$. Show the analytical expression. (*Hint: the electron potential energy varies linearly in the i-region*).
- e. Equate the electron potential difference between the N- and the P-AlGaAs to the contact potential, V_0 , solve for x_P and x_N .
- f. Now plot the entire band diagram quantitatively.
- 2. Repeat Problem 1 for a forward bias voltage of 0.7V. You don't need to show all the detailed steps, just those you need to derive the final band diagram. Show the quasi-Fermi levels.
- 3. Plot the electron and hole concentration distribution across the double heterojunction under the condition of Problem 2. Use logarithmic scale for the vertical axis as the concentration varies over a very large range when going from majority to minority side.