

Embedded Zerotree Wavelet

An Image Coding Algorithm

Shufang Wu

http://www.sfu.ca/~vswu

vswu@cs.sfu.ca

Friday, June 14, 2002

Agenda

- Overview
- Discrete Wavelet Transform
- Zerotree Coding of Wavelet Coefficients
- Successive-Approximation Quantization (SAQ)
- Adaptive Arithmetic Coding
- Relationship to Other Coding Algorithms
- A Simple Example
- Experimental Results
- Conclusion
- References
- Q & A

Overview (2-1)

- Two-fold problem
 - Obtaining best image quality for a given bit rate
 - Accomplishing this task in an embedded fashion
- What is Embedded Zerotree Wavelet (EZW) ?
 - An embedded coding algorithm
 - 2 properties, 4 features and 2 advantages (next page)
- What is Embedded Coding?
 - Representing a sequence of binary decisions that distinguish an image from the "null" image
 - Similar in spirit to binary finite-precision representations of real number

Overview (2-2)

- Embedded Zerotree Wavelet (EZW)

2 Properties

- Producing a fully embedded bit stream
- Providing competitive compression performance

4 Features

- Discrete wavelet transform
- Zerotree coding of wavelet coefficients
- Successive-approximation quantization (SAQ)
- Adaptive arithmetic coding

2 Advantages

- Precise rate control
- No training of any kind required

Agenda

- Overview
- Discrete Wavelet Transform
- Zerotree Coding of Wavelet Coefficients
- Successive-Approximation Quantization (SAQ)
- Adaptive Arithmetic Coding
- Relationship to Other Coding Algorithms
- A Simple Example
- Experimental Results
- Conclusion
- References
- Q & A

Discrete Wavelet Transform (2-1)

- Identical to a hierarchical subband system
 - Subbands are logarithmically spaced in frequency
 - Subbands arise from separable application of filters

LL_1	HL_1
LH_1	HH_1

First stage

LL2	HL2	HL_1
LH2	HH2	
L_{I}	H_1	HH_1

Second stage

Discrete Wavelet Transform (2-2)

 Wavelet decomposition (filters used based on 9-tap symmetric quadrature mirror filters (QMF))

Zerotree Coding (3-1)

- A typical low-bit rate image coder
 - Large bit budget spent on encoding the significance map

Fig. 3. A generic transform coder.

Zerotree Coding (3-2)

What is zerotree

A new data st

Parent:

Scanning rule:

<u>A coefficient x is </u>

An element of a zerotree for threshold T is

 \mathbf{IF}

It is not the descendant of a previously found zerotree root for threshold T.

All cicilici

Scanning order of the subbands

A zerotree 1001

Zerotree Coding (3-3)

Encoding

Fig. 6. Flow chart for encoding a coefficient of the significance map.

SAQ (3-1)

- Successive-Approximation Quantization (SAQ)
 - Sequentially applies a sequence of thresholds T₀,...,T_{N-1} to determine significance
- Thresholds
 - Chose so that $T_i = T_{i-1}/2$
 - T_0 is chosen so that $|x_i| < 2T_0$ for all coefficients x_i
- Two separate lists of wavelet coefficients
 - Dominant list

Dominant list contains:

Subordinate list contains:

The magnitudes of those coefficients that have been found to be significant.

SAQ (3-2)

Dominant pass

```
During a dominant pass:
During a subordinate pass:
SAQ encoding process:
         FOR
                      I = T_0
                       Dominant Pass;
       Subordinate Pass (generating string of symbols);
            String of symbols is entropy encoded;
      Sorting (subordinate list in decreasing magnitude);
        IF (Target stopping condition = TRUE) break;
                           NEXT;
```

SAQ (3-3)

Decoding

 Each decode symbol, during both passes, refines and reduces the width of the uncertainty interval in which the true value of the coefficient (or coefficients, in the case of a zerotree root)

Reconstruction value

- Can be anywhere in that uncertainty interval
- Practically, use the center of the uncertainty interval

Good feature

 Terminating the decoding of an embedded bit stream at a specific point in the bit stream produces exactly the same image that would have resulted had that point been the initial target rate

Adaptive Arithmetic Coding

- Based on [3], encoder is separate from the model
 - which is basically a histogram
- During the dominant passes
 - Choose one of four histograms depending on
 - Whether the previous coefficient in the scan is known to be significant
 - Whether the parent is known to be significant
- During the subordinate passes
 - A single histogram is used

Relationship to Other Coding Algorithms

- Relationship to Bit Plane Encoding (more general & complex)
- a) Reduce the width of the largest uncertainty interval in all coefficeints
- b) Increase the precision further
- c) Attempt to predict insignificance from low frequency to high

<u>Item</u>	PPC	EZW
1)	First b) second a)	First a) second b)
2)	No c)	c)
3)	Training needed	No training needed

Relationship to Priority-Position Coding (PPC)

Agenda

- Overview
- Discrete Wavelet Transform
- Zerotree Coding of Wavelet Coefficients
- Successive-Approximation Quantization (SAQ)
- Adaptive Arithmetic Coding
- Relationship to Other Coding Algorithms
- A Simple Example
- Experimental Results
- Conclusion
- References
- Q & A

A Simple Example (2-1)

- Only string of symbols shown (No adaptive arithmetic coding)
- Simple 3-scale wavelet transform of an 8 X 8 image
- $T_0 = 32$ (largest coefficient is 63)

63	-34	49	10	7	13	-12	7
-31	23	14	-13	3	4	6	-1
15	14	3 -	12	5	-7	3	9
-9	-7	-14	8	4	-2	3	2
-5	9	-1	47	4	6	-2	2
3	0	-3	2	3	-2	0	4
2	•	6	4	3	6	3	6
	-3	U	•				

A Simple Example (2-2)

- First dominant pass
- First subordinate pass

Comment	Subband	Coefficient Value	Symbol	Reconstruction Value
(1)	LL3	63	POS	48
(-)	HL3	-34	NEG	-48
			177	^

Coefficient Magnitude	Symbol	Reconstruction Magnitude
63	1	56
34	0	40
49	1	56
47	0	40

Magnitudes are partitioned into the uncertainty intervals [32, 48) and [48, 64), with symbols "0" and "1".

LH1 -2 Z 0

Experimental Results

12-byte header

For image of "Barbara":

For number of significant coefficients retained at the same low bit rate:

ItemOtherEZWNumber retainedLessMore

(Reason: The zerotree coding provides a much better way of encoding the positions of the significant coefficients.)

Compared with other wavelet transform coding

Conclusion

2 Properties

- Producing a fully embedded bit stream
- Providing competitive compression performance

4 Features

- Discrete wavelet transform
- Zerotree coding of wavelet coefficients
- Successive-approximation quantization (SAQ)
- Adaptive arithmetic coding

2 Advantages

- Precise rate control
- No training of any kind required

References

- 1. E. H. Adelson, E. Simoncelli, and R. Hingorani, "Orthogonal pyramid transforms for image coding," *Proc. SPIE*, vol.845, Cambridge, MA, Oct. 1987, pp. 50-58
- 2. S. Mallat, "A theory for multiresolution signal decomposition: The wavelet representation," *IEEE Trans. Pattern Anal. Mach. Intell.*, vol. 11, pp. 674-693, July 1989
- 3. I. H. Witten, R. Neal, and J. G. Cleary, "Arithmetic coding for data compression," *Comm. ACM*, vol. 30, pp. 520-540, June 1987
- 4. J. Shapiro, "Embedded image coding using zerotrees of wavelet coefficients," *IEEE Trans. Signal Processing.*, vol. 41, pp. 3445-3462, Dec. 1993

Thank You!

Embedded Zerotree Wavelet