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Examples of Transforms

1. Karhunen-Loeve Transfonn

-
NI-l N2-1

Fk (k 1, k 2) = L L f (n1 , n 2) ·A (n 1 , n 2; k 1, k 2)
n =0 n2=0

"A(k1' k 2) · A (111, n 2; k 1, k 2) -
N}-1 N2-1

L L Kf (11} , 112; /}, 12) ·A (/} , 12; k}, k 2)
k}=O k2=0

Covariance Kf (111' n 2; II' 12) =

E [ (x (111' 112)- x (111' n 2)) · (x (/1 , 12) - x (/1 , 12))]

~
. optimal in the sense that the coefficients are' uncorrelated

· finding Kj (n l' n2; /1' /2) is hard

. no simple computational algorithm

· seldom used in practice,M .{h~ "'a~
. -Olt tf~t'a~e, f;Y$t -. coe - - .

. . ..' "1'7_.Qy t'Y"t:I4t't' ~....
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Fig. 5.3.7 Images used for coding and statistics. (a) "Karen" has much more stationary
statistics than (b) "Stripes."
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fig. 5.3.23 Haar transform matri
multiplications.

The Slant Transform[s.3.9)

vector 1It a basis ¥ector 12give
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Fig. 5.3.22 Truncation PSNR versus block size for separable transforms with the image '~'.,
"Karen" when 60 percent of the coefficients are kept (p-0.6). '

)'where a is a normalization c
~_approximate the local behavior
;<compaction. However, the 12
"overall performance in most co
fbeen developed for the Slant Tr
,- The Sine Transform[S.3.10)I

size, the higher the energy compaction achieved by the transform. Also
two-dimensional blocks achieve more compaction than one-dimensional
blocks. Experience has shown that over a wide range of pictures there is
not much improvement in average energy compaction for two dimensional
block sizes above 8x8 pels. However, individual pictures with higher
nonstationary statistics can always be found for which this rule of thumb is
violated (for example, compare the KLT curves of Fig. 5.3.17 and
Fig.5.3.19L Also, considerable correlation may remain between blocks,
even though the correlation between pels within a block is largely
removed.[S.3.21)We shall return to this point in a later section.

"
m,i = 1...

5.3.1f Miscellaneous Transforms

Several other transforms have been studied. For example, the Haar
Transform[::3.8) can be computed from an orthogonal (but not orthonormal)
matrix T that contains only + I's, -I's and zeros as shown in Fig. 5.3.23.
This enables rather simple and speedy calculation, but at the expense of
energy compaction performance.

:,}ts main utility arises when ima,
,'sum of two uncorrelated images
~~tatisticswith a KLT that is apI
,~ The Singular Value Decor
,theseparable inverse transform,
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Comparison of truncation errors using separable, two-dimensional blocks with
the image "Karen". The coefficients having the largest MSV are transmitted.
(a) 4x4 blocks, N-16. (b) 16x 16 blocks. N-256.



Discrete Cosine Transform
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Comlnents:

. good energy compaction (better than DFT)
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I I)

sharp discontinuity no sharp discontinuity

. fast al£orithms'-'

. all real coefficients

. . most often used in practice (good quality image at bit
rate less than 1 bit/pixel)

· other transfonns: Hadamard, Baar, Slant, Sine, ...
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The sequence Y(k) is related to yen) through the 2N-point inverse DRj; .

given by "

1 2N-I

yen) == 2N 2: Y(k)WiJn, 0:5 n :5 2N - 1.
k=O

From (3.20), x(n) can be recovered from yen) by

x(n) ==

{
yen), 0:5 n ~ N - 1
0, otherwise.

From (3.27), (3.28), and (3.29), and after some algebra,

{

I

[
CiO) N-I 1T

]N
_

2 + 2: Cik) cos2N k(2n + 1) , 0:5 n:5 N - 1
x(n) == k=l

0, otherwise.

Equation (3.30) can also be expressed as

{

I N-l .
- 2: w(k)Cik) cos 2~T k(2n + 1), 0:5 n :5 N - 1

x(n) == N k=O JV

0, otherwise.

{

I
-, k ==0

where w(k) == 2
1, 1:5 k :5 N - 1.

Equation (3.31) is the inverse OCT relation. From (3.25) and (3.31),

Discrete Cosine Transform Pair

Cx(k) ==

{ 0,

x(n) ==

{ 0,

N-l

n~o 2x(n) cos 2~ k(2n + 1), 0:5 k :5 N - 1

otherwise.

1 N-I
- 2: w(k)Cik) cos 2

1T

N k(2n + 1), 0 :5 n :5 N - 1N k=O

otherwise.

.'

(3.31.~1

"

(3.32a)

\
(3.32b) t

,

\
From the derivation of the OCT pair, the DCT and inverse OCT can be computed
by

Computation of Discrete Cosine Transform

Step 1. yen) == x(n) + x(2N - 1 - n)
Step 2. Y(k) == OFT [yen)] (2N-point DFT computation)

Ste 3. C (k) ==

{
W~~Y(k), 0:5 k ~ N - 1

p x 0, otherwise

152 The Discrete Fourier Transform Chap, 3

Cc

Step2. y(n) == I[

Step3. x(n) == {{
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Computation of Inverse Discrete Cosine Transform

IDFT [Y(k)] (2N-point inverse DFT computation)

{
yen), 0 S n S N - 1
0, otherwise

In computing the DCT and inverse DCT, Steps 1 and 3 are computationally quite
simple. Most of the computations are in Step 2, where a 2N-point DFT is computed
for the DCT and a 2N-point inverse DFT is computed for the inverse DCT. The
DFT and inverse DFT can be computed by using fast Fourier transform (FFT)
algorithms. In addition, because yen) has symmetry, the 2N-point DFT and inverse
DFT can be computed (see Problem 3.20) by computing the N-point DFT and the
N-point inverse DFT of an N-point sequence. Therefore, the computation in-
volved in using the DCT is essentially the same as that involved in using the DFT.

In the derivation of the DCT pair, we have used an intermediate sequence
yen) that has symmetry and whose length is even. The DCT we derived is thus
called an even symmetrical DCT. It is also possible to derive the odd symmetrical
DCT pair in the same manner. In the odd symmetrical DCT, the intermediate
sequence yen) used has symmetry, but its length is odd. For the sequence x(n)
shown in Figure 3.9(a), the sequence yen) used is shown in Figure 3.9(b). The
length of yen) is 2N - 1, and yen), obtained by repeating yen) every 2N - 1
points, has no artificial discontinuities. The detailed derivation of the odd sym-
metrical DCT is considered in Problem 3.22. The even symmetrical DCT is more
commonly used, since the odd symmetrical DCT involves computing an odd-length
DFf, which is not very convenient when one is using FFT algorithms.

x(n) y(n) =x(n) + x(2N - 2 - n) - x(N - 1)o(n - (N - 1))

Figure 3.9 Example of (a) x(n) and (b) yen) = x(n) + x(2N - 2 - n) -
x(N - l)o(n - (N - 1». The sequence yen) is used in the intermediate step in
defining the odd symmetrical discrete cosine transform of x(n).

Sec. 3.3 The Discrete Cosine Transform 153
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. Signal independent

. p --- > 1
.. KLT ---> DCT

for first order

. Markov Image .m9de1

. Type II DCT:
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FIGURE 12.4 Th. basi. matrlc.. for the DCT.

The outer products of the rows are shown in Figure 12.4. Notice that the basis matrices
show increased variation as we go from the top left matrix, corresponding to the Boocoefficient,

to the bottom right matrix, corresponding to the B(N-l)(N-l) coefficient.
The DCT is closely related to the discrete Fourier transform (DFT) mentioned in Chap-

ter II, and in fact can be obtained from the DFT. However, in terms of compression, the DCT
performs better than the DFT.

Recall that when we find the Fourier coefficients for a sequence of length N, we assume that
the sequence is periodic with period N. If the original sequence is as shown in Figure 12.5a, the
DFT assumes that the sequence outside the interval of interest behaves in the manner shown in

Figure 12.5b. This introduces sharp discontinuities, at the beginning and end of the sequence.
In order to represent these sharp discontinuities the DFT needs nonzero coefficients for the
high-frequency components. As these components are needed only at the two endpoints of
the sequence, their effect needs to be cancelled out at other points in the sequence. Thus, the
DFT adjusts other coefficients accordingly. When we discard the high-frequency coefficients
(which should not have been there anyway) during the compression process, the coefficients
that were cancelling out the high-frequency effect in other parts of the sequence result in the
introduction of additional distortion.



Discarding Transform Coefficients (cont.)
I
I

Threshold coding: Coefficients with values above a given thres-
L,Ad are coci.ed

. location as well as amplitude has to be coded

. run-length coding is useful (many zeroes)
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Discarding Transform Coefficients

Zonal co-ding: Eliminate coefficients in a fixed zone-

(Ex)
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Scalar Quantization of a Vector Source

. Assume N scalars: Ii 1 < i < N

· Each Ii is quantized to Li reconstruction levels.

. Total of B bits to code N scalars.

· Optimum bit allocation strategy depends on
(a) error criterion and (b) pdf of each random
variable.

· Assume we minimize MSE : 'Lf 1E[(lli - li)2J
with respect to Bi the number of bits for the
itk scalar for 1 < i < N.- -

· Assume pdf of all Ii is the same except they
have different variances.

. Use Lloyd Max quantizer.

. Under these conditions we have:
B 1 a?

Bi == - + -log z
N 2 rny 1 aJ

. aT is the variance of Ii

L . - ai BINz -
[ N .

J
1IN2

TIj=l (1, 1

. ~i is the number ofreconstructiorylevelsfor source1

I-

4 029
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fi~rt 10..a7 DCT.coded Image v'nh
\"Islbl: blockm~ effect.

and (b) show the results of DCT image coding at 1 bit.pixel and ~bit:pixel. re-
spectively. The original image is the 512 x 512-pixel image shown in Figure
1O.~5Ia). In both examples. the subimage size used is 16 x 16pixels. and adapti\~
zonal coding with the zone shape shown in Figure 1OA3(b) and the zone size adapted
to the local image characteristics has been used.

.. ~. - .: . ,
,.;..l,.,:, ,:...7'~ ;'~

fa) Ibl

fili\urt 10.48 Example of DCT image coding. (a) DCT.coded ima~e 011I bn:plxel. :-;~1SE
= 0.8'(. S:-;R = :0.7 dB. (bl DCT.coded image al! bil:plxel.S~1SE =0.9'<.S:-;R=
:0.2 dB.

652 Chap. 10
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Figure 10.46 Illustr3t1on oj gralnln~~~

increase due to quantiz3110n oi DCT

coefficients. A ~.bll pixel umiorn: qua~.
IIzer \lias used 10 qU3nllze each DCT
coefficIent retained to reconstruct the

Image in Figure IO..l5(b).

and are selectedfrom a zoneof triangular shapeshownin Figure 1O.43(a). From
Figure 10.45.it is clear that the reconStructedimageappearsmore blurry as we
retain asmallernumber of coefficients. It is alsoclearthat animagereconstructed
from only asmall fraction of the transformcoefficientslooksquite good.illustrating
the energycompactionproperty.

Another type of degradation resultsfrom quantizationof the retainedtrans.
form coefficients. The degradation in this casetypically appearsas graininessin
the image. Figure 10.46 shows the result of coarsequantization of transform
coefficients. This exampleis obtained by usinga 2-bit uniform quantizerfor each
retainedcoefficient to reconstruct the imagein Figure 10.45(b).

A third type of degradationarisesfrom subimage-by-subimagecoding. Since
eachsubimageis coded independently. the pixels at the subimage boundaries may
have anificial intensity discontinuities. This is known as the blocking effecl. and
is more pronounced as the bit rate decreases. An image with a visible blocking
effect is shown in Figure 1O.47.u.A DCf-with zonal coding. a subimage of 16 x
16 pixels. and a bit rate of 0.15 bitipixel were used to generate the image in Figure
10.47.

Examples. To design a transform coder at a given bit rate. different types
of image degradation due to quantization have to be carefully balanced by a proper
choiceof various designparameters. As wasdiscussed.these parameters include
the transform used. subimage size. selection of which coefficients will be retained.
bit allocation. and selection of quantization levels. If one type of degradation
dominatesother typesof degradation. the performanceof the coder can usually
be improvedby decreasingthe dominant degradation at the expense of some
increase in other types of degradation.

Figure 10.48 shows examples of transform image coding. Figure 10.48(a)

Sec.,0.4 Transform Image Coding
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Figure 10.50 Example of blocking effect reduction using a filtering method. (a) Image
of 512 x 512 pixels with visible blocking effect. The image is coded by a zonal DCT coder
at 0.2 bit/pixel. (b) Image in (a) filtered to reduce the blocking effect. The filter used is a
3 x 3-point h(n,. n2)with h(O.0) = ! and h(n,. n2) = m at the remaining eight points.

selection of the zone shape and size in zonal coding are simpler than those with a
2-D transform coder. Hybrid coding of a single image frame has not been used
extensively in practice, perhaps because the method does not reduce the correlation
in the data as much as a 2-D transform coder and the complexity in a 2-D transform
coder implementation is not much higher than a hybrid coder. As will be discussed
in Section 10.6, however, hybrid coding is useful in interframe image coding.

10.4.5 Adaptive Coding and Vector Quantization

Transform coding techniques can be made adaptive to the local characteristics
within each subimage. In zonal coding, for example, the shape and size of the

Transmitter

E.
1-0 waveform coding

along each column

'~~eceiver

1-0 waveform reconstruction
along each column

1-0 inverse transform

along each row'

Figure 10.51 Hybrid transform/waveform coder.

Sec. 10.4 Transform Image Coding 655
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Iterative Procedures for Reduction of

Blocking Effects in Transform
Image Coding

Ruth Rosenholtzand AvidehZakhor

Abstract- We propose a new iterative block reduction technique
based on the theory of projection onto convex sets. The basic idea
behind this technique is to impose a number of constraints on the coded
image in such a way as to restore it to its original artifact-free form. One
such constraint can be derived by exploiting the fact that the transform-
coded image suffering from blocking effects contains high-frequency
vertical and horizontal artifacts corresponding to vertical and horizontal
discontinuities across boundaries of neighboring blocks. Since these
components are missing in the original uncoded image, or at least can be
guaranteed to be missing from the original image prior to coding, one
step of our iterative procedure consists of projecting the coded image
onto the set of signals that are bandlimited in the horizontal or vertical
directions. Another constraint we have chosen in the restoration process
has to do with the quantization intervals of the transform coefficients.
Specifically, the decision levels associated with transform coefficient
quantizers can be used as lower and upper bounds on transform coeffi-

Manuscript received June 10, 1991; revised February 3, 1992. This work
has been supported by ffiM, Eastman Kodak Company, TRW, and the
National Science Foundation contract MIP-9057466. This paper was recom-
mended by Associate Editor Dimintris Anastassiou.

The author is with the Department of Electrical Engineering and Com-
puter Sciences, University of California, Berkeley, CA 94720.

IEEE Log Number 9107519.

91

cients, which in turn define boundaries of the convex set for projection.
Thus, in projecting the "out-of-bound" transform coefficient onto this
convex set, we will choose the upper Oower) bound of the quantization
interval if its value is greater (less) than the upper (lower) bound. We
present a few examples of our proposed approach.

I. INTRODUCTION

Transform coding is one of the most widely used image compres-
sion techniques. It is based on dividing an image into small blocks,
taking the transform of each block and discarding high-frequency
coefficientsand quantizing low-frequency coefficients. Among vari-
ous transforms, the discrete cosine transform (DCT) is one of the
most popular because its performance for certain class of images is
close to that of the Karhunen-Loeve transform (KLT), which is
known to be optimal in the mean squared error sense.

Although DCT is used in most of today's standards such as JPEG
and MPEG, its main drawback is what is usually referred to as the
"blocking effect." Dividing the image into blocks prior to coding
causes blocking effects- discontinuities between adjacent
blocks-particularly at low bit rates. In this paper, we present an
iterative technique for the reduction of blocking effects in coded
images.

II. ITERATIVE RESTORATION METHOD

The block diagram of our proposed iterative approach is shown in
Fig. 1. The basic idea behind our technique is to impose a number

1051-8215/92$03.00 @ 1992 IEEE
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INITIALIZATION

i=O

QUANTIZATION
CONSTRAINT

BAND-LIMITATION

CONSTRAINT

NO YES
STOP

Fig. 1. Block diagram of the iterative algorithm.

of constraints on the coded image in such a way as to restore it to its
original artifact-free-form. We derive one such constraint from the
fact that the coded image with N x N blocks has high-frequency
horizontal and vertical artifacts corresponding to the discontinuities
at the edges of the N x N blocks. Therefore, one step of our
procedure consists of bandlimiting the image in the horizontal and
vertical directions. We refer to this constraint as the filtering
constraint.

We derive the second constraint from the quantizer and thus refer
to it as the quantization constraint. Because the quantization inter-
vals for each DCT coefficient is assumed to be known in decoding a
DCT encoded image, the quantization constraint ensures that in
restoring images with blocking effects, DCT coefficients of N x N
blocks remain in their original quantization interval.

If 81 denotes the set of bandlimited images, and 82 denotes the
set of images whose N x N DCT coefficients lie in specific quanti-
zation intervals, our goal can be stated as that of finding an image in
the intersection of 81 and 82, One way to achieve this is to start
.with an arbitrary element in either of the two sets and iteratively
map it back and forth to the other set, until the process converges to
an element in the intersection of the two sets. Under these condi-

tions convergence can be guaranteed by the theory of projection
onto convex sets (POCS) if sets 81 and 82 are convex, and if the
mapping from each set to the other is a projection [6]. By definition,
the projection of an element x in set A onto set B is equivalent to
finding the closest element, according to some metric, in B to x.

To apply the above idea to our problem, we first notice that two

sets 8t and 82 are both convex. We also choose the mean squared
error as our metric of closeness. This implies that a projection from
82 to 8. can be accomplished by any bandlimitation algorithm such
as ideal low-pass filtering. It also implies that projection from 81 to
82 can be accomplished by moving N x N DCT coefficients that
are outside their designated quantization interval to the closest
boundary of their respective quantization intervals. For instance, if
a particular N x N DCT coefficient, which is supposed to be in the
range [a, b], takes on a value greater than b, it is projected to b.
Alternatively, if it takes on a value smaller than a it is projected
onto a.

Having explained the constraints, convex sets, and projections,
we now summarize our proposed iterative procedure shown in Fig.
1. In the first part of each iteration, we low pass filter, or bandlimit,
the image that has high-frequency horizontal and vertical compo-
nents corresponding to the discontinuities between N x N blocks.
In the second part of each iteration we apply the quantization
constraint as follows. First we divide the image into N x N blocks
and take the DCT of each. Then we project any coefficient outside
its quantization range onto its appropriate value. Under these condi-
tions, the POCS theory guarantees that iterative projection between
the sets 81 and 82 results in convergence to an element in the
intersection of the two sets.

m. EXPERIMENTAL RESULTS

Fig. 2(a) shows the original, unquantized 512 x 512 Lena, and
(b), (c), and (d) show its JPEG encoded version to 0.43, and 0.24,
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(a)

(b)

(c)

(d)

Fig. 2(a) Original 512 x 512 image, Lena. 2(b) Lena quantized to 0.43
bpp. 2(c) Lena quantized to 0.24 bpp. 2(d) Lena quantized to 0.15 bpp.
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and 0.15 bpp, respectively. The quantization tables for Figs. 2(b),
(c), and (d) are included in the Appendix.

Strictly speaking, the band-limitation portion of our algorithm.
corresponds to a true projection if the image under consideration is
convolved with an ideal low-pass filter. Since an ideal low-pass
filter cannot be implemented in practice, we have chosen to approxi-
mate it with a 3 x 3 finite impulse response (FIR) filter of the form

h(O,O) = 0.2042,

h(O, 1) = h(O, - 1) = h(I,O) = h( -1,0) = 0.1239 (1)

h(0,2) = h(O, - 2) = h(2,0) = h(2, 0) = 0.0751.

We now show examples of our iterative algorithm. Fig. 3(a) shows
five iterations of our algorithm applied to the 0.43-bpp quantized
image of Fig. 2(b). The FIR filter of (1) was used
for the band-limitation step. As Fig. 2(b) shows, blocking artifact
has been removed without introducing excessive blurring. For com-
parison purposes, the result of applying the low-pass filter in (1) to
Fig. 2(b) for five times, without applying the quantization con-
straint, is also shown in Fig. 3(b). Although consecutive low-pass
filtering removes most of the blocking effect, it blurs the image in a
noticeable way. We have found that applying the low-pass filter of
(1) once rather than five times, results in a less blurry image than in
Fig. 3(b), but at the same time does not remove all the blocking
effect.

Figs. 4(a) and (b) show application of our algorithm to the
O.24-bpp quantized image of Fig. 2(c) for 5 and 20 iterations,
respectively. The FIR filter of (1) was used for the band-limitation
step. As seen, the blocking artifact is better removed in
Fig. 4(b) than in 4(a), while they are as sharp as each other. For

_ comparison purposes, Fig. 4(c) and (d) show the result of applying
the low-pass filter of (1) to Fig. 2(c), 5 and 20 times, respectively.
Comparing Fig. 4(c) and 4(d) to Fig. 4(a) and (b), respectively, we
find that the latter pair are more blurry than the former. Thus,
applying the quantization constraint prevents the images from be-
coming excessively blurry.

Fig. 5(a) shows application of our algorithm to the 0.15-bpp
quantized image of Fig. 2(d) for 20 iterations. The FIR filter of (I)
was used for the band-limitation step. For comparison purposes,
Fig. 5(b) shows the result of applying the low-pass filter of (1) to
Fig. 2(d), 20 times. Comparing Fig. 5(b) to 5(a), we find that the
latter is considerably more blurry than the former.

IV. CONCLUSIONS

The major conclusions to be drawn from this paper are as
follows; I) the proposed iterative algorithm using a 3 x 3 low-pass
filtering of (1) results in images that are free of blocking artifacts
and excessive blurring; 2) low-pass filtering by itself could remove
blockiness but at the expense of increased blurriness.

It is conceivable to generate images similar to Figs. 5(a) and 4(b)
without having to apply our algorithm for as many as 20 iterations.
Our conjecture is that this could be achieved by increasing the
region of support of the impulse response of the filter of (1). In
practical hardware implementations however, 3 x 3 convolvers are
more readily available than, say, 30 x 30 ones.

We have checked the convergence of our algorithm and found
that it converges after 20 iterations or so. This is encouraging since
there is no guarantee that the intersections of our particular convex
sets is nonempty, and the theory of POCS only guarantees conver-
gence in situations where the intersection is nonempty.

One way to increase the likelihood of convergence is to vary the
confidence with which the ideal solution is in the
chosen constraint set, by varying its size. For example, if we choose
prototype constraint sets as in [10], using the statistics of the
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(a)

(b)

Fig. 3(a) Result of applying the iterative algorithm to Fig. 2(b) for five
iterations with the low-pass filter of (I) used for bandlimitation. (b) Result of
low-pass filtering Fig. 2(b) five times using the filter in (I).

quantization noise, we can change the boundaries and the size of the
constraint set in a controlled fashion and therefore increase the
likelihood of a solution in the intersection of the constraint sets.

Examples of such prototype constraint sets include bounded varia-
tion from the Weiner solution and pointwise adaptive smoothness.
The latter constraint has the obvious advantage of being locally
adaptive to changes in the characteristics of the image. Projection
onto fuzzy sets is another way of increasing the size of our convex
sets [9].

(a)

(b)

(c)

ApPENDIX

The quantization table for Fig. 2(b) is

20 24 28 32 36 80 98 144
24 24 28 34 52 70 128 184
28 28 32 48 74 114 156 190
32 34 48 58 112 128 174 196
36 52 74 112 136 162 206 224
80 70 114 128 162 208 242 200
98 128 156 174 206 242 240 206

144 184 190 196 224 200 206 208
0;«%1.

r'\For Fig. 2(c) it is (d)
Fig. 4(a) Result of applyingthe iterativealgorithmto Fig. 2(c) for 5

50 60 70 70 90 120 255 255 iterations with the low-pass filter of (I) used for bandlimitation. (b) Result of
applyingthe iterative algorithmto Fig. 2(c) for 20 iterationswith the

60 60 70 96 130 255 255 255
low-pass filter of (I) used for bandlimitation. (c) Result of low-pass filtering

70 70 80 120 200 255 255 255 Fig. 2(c) five times using the filter in (I). (d) Result of low-pass filtering Fig.
70 96 120 145 255 255 255 255 2(c) 20 times using the filter in (I).
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(b)

Fig. 5(a) Result of applying the iterative algorithm to Fig. 2(d) for 20
iterations with the low-pass filter of (I) used for bandlimitation. (b) Result of
low pass filtering Fig. 2(d) 20 times using the filter in (I).
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110
130
150
192
255
255
255
255

130
150
192
255
255
255
255
255

150
192
255
255
255
255
255
255

192
255
255
255
255
255
255
255

255
255
255
255
255
255
255
255

255
255
255
255
255
255
255
255

255
255
255
255
255
255
255
255

255
255
255
255
255
255
255
255

The 255 entry in the above tables indicates that the coefficient was
discarded.
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