Lossless Compression Algorithms for Direct-Write Lithography Systems

Hsin-I Liu

Video and Image Processing Lab Department of Electrical Engineering and Computer Science University of California at Berkeley

EE225B Spring 2010

Optical Lithography

- Lithography is applied to create patterns on the wafer in semiconductor manufacturing
- Current approach: Mask is applied in optical lithography systems
 - cost of mask is increasing.....

From Mask to Maskless Lithography								
High Volumn Manufacturing	2004	2006	2008	2010	2012	2014	2016	2018
Technology Node (nm)	90	65	45	32	22	16	11	8

Source: ITRS 2004

Cost of Masks in Optical Lithography

ITRS 2009

- A micromirror array is used to replace the optical mask
 - Reduce the cost of mask by x times
 - Increase patterning flexibility
- Focus of research:
 - Fabricate micromirror \rightarrow array
 - Modify the layout pattern for proximity effect correction \rightarrow OPC or EPC

However.....

- Each micromirror is controlled individually and dynamically
- Layout image is rasterized into pixel based
 - → Data delivery problem for real-time manufacturing
- Update the pixel value for
 - Different portion of layout images
 - Overcome the voltage attenuation problem

Data Delivery Issue

 Data rate for 45nm minimum feature to achieve 1 wafer layer/minute throughput

$$\frac{wafer \cdot layer}{60 \ s} \times \frac{\pi/4 \cdot (300 \ mm)^2}{wafer \cdot layer} \times \frac{pixel}{(22 \ nm)^2} \times \frac{5 \ bits}{pixel} = 12 \ Tb/s$$

- Estimated needed compression: 12 Tb/s ÷ 1.2 Tb/s = 10
- Board to chip communication: 1.2 Tb/s

- Throughput requirement can be reduced to 3-5 wafer layers per hour \rightarrow still need compression
- Lossless compression is applied to
 - Reduce storage space
 - Lower I/O throughput overhead

Data Compression Requirements

- Lossless compression
- Achieve ~10 compression efficiency
- Asymmetric compression algorithms
 - Offline encoding
 - Real-time decoding \rightarrow decoder is implemented in hardware and integrated into the writer system

Block GC3 - Context Predict

- Copying ZIP, 2D-LZ
 - 1. Copy from left or above
 - 2. Good for repetitive layouts

Block GC3 Segmentation map

- Layout images are divided into prediction and copy regions
 - Determined within 8 x 8 block
- Errors from prediction and copy are transmitted from Encoder to decoder
- All the information is further compressed

Complexity vs. Compression Ratio of Compression Schemes

[H. Liu '06]

Full-Chip Test

[A. Zakhor '09]

Decoder Performance - FPGA

Device	Xilinx Virtex II Pro 70
Number of slice flip-flops	3,233 (4%)
Number of 4 input LUTs	3,086 (4%)
Number of block RAMs	36 (10%)
System clock rate	100 MHz
System throughput rate	0.99 (pixels/clock cycle)
System output data rate	495 Mb/s

- The hardware performance can be improved
 - Update FPGA devices
 - Apply ASIC implementation

University of California at Berkeley, Video and Image Processing Lab Decoder Performance - ASIC

Block	Block		Throughput (output/cycle)	Power (mW)
Golomb		1,136	1	0.2
Huffman		848	1/codeword+2	0.21
Linear Predic	ction	455	1	0.16
Address Gene	erator	362	0.99	
Region Deco	der	18,370	1	7.26
Control/Merg	ge	749	1	0.22
Memory		46,960	1	13.27
Block GC3 Single decoder		69,288	0.99	21.48

- 85% of area results from 1.7 KB of memory
- System clock rate: up to 500 MHz
- System throughput: 0.99
- System output rate: up to 2.47 Gb/s
- 200 decoders to achieve 500 Gb/s \rightarrow 3 wafer layers per hour

— University of California at Berkeley, Video and Image Processing Lab — Apply Block GC3 to reduce I/O overhead

І/О Туре	Data rate	# of link for 500 Gb/s	# of link with Block GC3
Cell I/O	6.4 Gb/s	80	12
Hyper Transport 3.1	6.4 Gb/s	80	12
Optical link	3 Gb/s	167	26
Intel 65 nm interface	10 Gb/s	50	8
Intel 45 nm interface	25 Gb/s	20	3

- 200 Block GC3 decoders is 14 mm²
- Reduced I/O interface is more practical for direct-write applications

Writer Chip Architecture

- DRAM array directly controls the micromirror array above
- Throughput of the chip: 3 wafer·layer/hour (500Gb/s)

 Find best copy distance → the most computational challenging part of encoding

- Block segmentation reduces the complexity by M²
- For linear writing system, horizontal/vertical copy is sufficient

2010/4/15

EE225B Spring 2010

Find the Best Copy Distance - Multiple Candidates

- Every block may have more than one candidates with fewest mismatches \rightarrow enforce spatial coherency for better compression
- Region growing \rightarrow use the fewest number of regions to represent the segmentation map

Region Growing

- 2-D region growing is an NP-complete problem
 - Use left/above segmentation info as preferences

If (a = c) then ? = b else ? = c

- 1-D region growing can be solve in polynomial time
 - A better solution for complex segmentation maps

Improve Compression Efficiency

- For linear writing system and ASIC layout images \rightarrow average CR > 10
- For different writing system or compact layout \rightarrow modify encoding scheme to improve compression efficiency

- REBL system

REBL Direct-Write Lithography System

REBL Layout Image

- Layout pattern created by digital pattern generator (DPG)
 - 256 rows per DPG, 16 DPGs in total
 - Column by column writing mechanism
- Layout angle orientation: 15° to 75°
 → ±30° + 45°
- E-beam proximity corrected

Lossless Compression Algorithm for REBL- Block RGC3

- Allow diagonal copying
- Reduce block size and dimension
- Apply 1-D region growing to reduce numbers of regions
- Increase memory size
- Encoding complexity

$$O\left[\frac{mn}{HW}(d_x \times d_y)\right]$$

Memory size= $d_x x d_y$

Compression Results

	Block GC3			Block RGC3			ZIP	BZip2	JPEG-LS
Buffer size	1.6KB	20KB	40KB	1.6KB	20KB	40KB	32KB	900KB	2.2KB
Block size	4x4	4x4	4x4	5x3	5x3	5x3			
Layout size									
2048x64	3.13	3.37	3.44	4.92	6.54	6.60	3.23	3.95	0.95
1024x256	3.19	3.30	3.36	5.09	6.91	7.12	3.37	4.48	0.96
2048x256	3.19	3.30	3.37	5.10	7.01	7.29	3.43	4.68	0.97

- Block RGC3 outperforms Block GC3 and others
- Larger buffer size, larger image size \rightarrow better compression ratio
- 50 69% of improvement due to diagonal copying
 - more effective as buffer size increases

	Block RGC3, 4x4 block, 40 KB Buffer						
Image size	H / V Copying	Diagonal Copying					
64×2048	3.44	5.22					
256×2048	3.37	5.71					

25° Metal 1 layout

Results for Various Wafer Layers

	Buffer	Meta	al 1 Men	nory	Metal 1 Logic	Poly	V	ia
inage size	size	25°	35°	38 °	25°	35°	25°	35°
64×2048	1.7KB	4.92	5.37	5.14		8.49	13.14	12.67
256×1024	1.7KB	5.09	5.43	5.33	8.55	8.47	13.58	13.17
256×2048	1.7KB	5.10	5.45	5.35		8.51	13.62	13.22
64×2048	20KB	6.54	6.68	6.63		11.17	15.31	15.40
256×1024	20KB	6.91	7.08	7.11	14.06	12.50	16.14	16.00
256×2048	20KB	7.01	7.20	7.22		12.77	16.35	16.22
64×2048	40KB	6.60	6.79	6.71		11.91	15.86	16.11
256×1024	40KB	7.12	7.23	7.34	14.87	12.80	17.05	17.27
256×2048	40KB	7.29	7.41	7.50		13.17	17.45	17.79

• Higher compression ratio for via than metal 1

• Larger buffer size, larger image size \rightarrow better compression ratio

Encoding Time

- (1) Diagonal copying
- Must compare each image block with each copy distance

$$O\left(buffer_size\left(\frac{1}{(block_size)} + \frac{1}{\beta}\right)\right) \quad , \ \beta \approx 10$$

- (2) Growing regions
- Proportional to avg. # optimal copy distances per block

$$O\left(\frac{d_{matches,block}}{block_size}\right)$$

(3) Combining regions

Allowed

copy range

- Proportional to avg. # optimal copy distances per region
- Inversely proportional to # of blocks per region \overline{N}

$$O\left(\frac{\overline{d_{matches,region}}}{\overline{N} \cdot block _ size}\right) = O\left(\frac{\overline{d_{matches,region}}}{\overline{region _ size}}\right)$$

2010/4/15

Current

block

Encoding Times

		Diagonal copying		Region- growing		Combining regions		Total encoding time (seconds)	
Image	Buffer	Metal1	Via	Metal1	Via	Metal1	Via	Metal1	Via
size	size	25°	25 °	25°	25 °	25°	25 °	25 °	25 °
64×2048	20KB	95.4%	85.5%	4.3%	13.0%	0.5%	1.4%	37.0	41.4
256×1024	20KB	95.2 %	85. 1%	4.2%	13.8%	0.4%	1.1%	92.1	109.2
64×2048	40KB	96. 1%	84.9 %	3.6%	14.0%	0.03%	1.1%	66.2	78.7
256×1024	40KB	95.6 %	81.1 %	4.0%	18.0%	0.02%	0.9%	173.9	226.9

- Dominant factor → Diagonal copying for best copy distance
- Encoding time proportional to buffer size, image size

Integrating Block GC3 with Writer Systems

- Need to modify the algorithm to achieve best compression efficiency
 - May increase encoding complexity
 - Remain same decoding structure
 - Remain asymmetric compression algorithm

Summary

System power

- Block GC3 solves data delivery problem for direct-write lithography systems
- Implement Block GC3
 - Block GC3 reduces: I/O data rate

ightarrow the goal

- Block RGC3 improves compression ratio for REBL system
 - Increase encoder complexity
 - Decoder complexity remains low