
Objectives of Image Coding

•
 

Representation of an image with acceptable quality, 
using as small a number of bits as possible

Applications:
•

 
Reduction of channel bandwidth for image transmission

•
 

Reduction of required storage
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Figure 10.1  Typical environment for image coding.

Objectives of Image Coding cont.



Issues in Image Coding
1.

 

What to code?
a.

 

Image density
b.

 

Image transform coefficients
c.

 

Image model parameters

2.

 

How to assign reconstruction levels
a.

 

Uniform spacing between reconstruction levels
b.

 

Non-uniform spacing between reconstruction levels

3.

 

Bit assignment
a.

 

Equal-length bit assignment to each reconstruction level
b.

 

Unequal-length bit assignment to each reconstruction level
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Figure 10.2  Three major components in image coding.

Issues in Image Coding cont.



Methods of Reconstruction Level 
Assignments

Assumptions:
•

 

Image intensity is to be coded
•

 

Equal-length bit assignment

Scalar Case
1.

 

Equal spacing of reconstruction levels (Uniform Quantization)
(Ex):  Image intensity f:  0 ~ 255

f ! ! f̂f ! ! f̂Uniform
Quantizer



Methods of Reconstruction Level 
Assignments cont.

Number of reconstruction levels:  4 (2 bits for equal bit assignment)

0 32 64 96 128 160 192 224 255



Methods of Reconstruction Level 
Assignments cont.

Figure 10.3
Example of uniform quantizer.  The number of reconstruction levels is 4, is assumed to be 
between 0 and 1, and    is the result of quantizing .  The reconstruction levels and decision 
boundaries are denoted by ri and

 

di , respectively. 



Scalar Case (cont.)
2. Spacing based on some error criterion

ri

 

:  reconstruction levels (32, 96, 160, 224)

di

 

: decision boundaries (0, 64, 128, 192, 256) 

Optimally choose ri

 

and di

 

.

To do this, assume                             

J

 

the number of reconstruction levels

:    probability density function for f

Minimize

ri

 

, di

 

, :                                                             =                                        

==>  Lloyd-Max Quantizer

These are not simple linear equations.



Scalar Case (cont.)
2.

 

Spacing based on some error criterion

ri

 

:  reconstruction levels (32, 96, 160, 224)

di

 

: decision boundaries (0, 64, 128, 192, 256) 

Optimally choose ri

 

and di

 

.

To do this, assume                             

J

 

the number of reconstruction levels

:    probability density function for f



Scalar Case (cont.)
Minimize

ri

 

, di

 

, :

==>  Lloyd-Max Quantizer

These are not simple linear equations.



Scalar Case (cont.)
 Solution to Optimization Problem



Figure 10.5
Example of a Lloyd-Max quantizer.  The number of reconstruction levels is 4, and 
the probability density function for    is Gaussian with mean of

 

0 and variance of 1.



Figure 10.6
Comparison of average distortion

 

as a function of L, the number of reconstruction 
levels, for a uniform quantizer

 

(dotted line) and the Lloyd-Max quantizer

 

(solid line).  The vertical 
axis is 10 log10

 

D.  The probability density function is assumed to be Gaussian with variance of 1.



Scalar Case (cont.)
For some densities, the optimal solution can be viewed as follows:

P(g)

 

is flat density equally likely between gmax

 

, gmin

Uniform
quantizer

Figure 10.7 Nonuniform

 

quantization by companding.

Nonlinearity Nonlinearity-1



Scalar Case (cont.)

Figure 10.7  Nonuniform

 

quantization by companding.

Uniform
quantizerNonlinearity Nonlinearity-1

For some densities, the optimal solution can be viewed as follows:

P(g)

 

is flat density equally likely between gmax

 

, gmin



Table ?
 

1-2  Companding
 

quantization by transformation

Probability Density Forward Transformation Inverse Transformation

Gaussian

Rayleigh

Lapiacian

Where



Vector Case
f1

 

, f2

 

:  two image intensities
One approach:  Separate level assignment for f1

 

, f2
•

 

previous discussions apply
Another approach:  Joint level assignment for (f1

 

, f2

 

)
•

 

typically more efficient than separate level assignment

f2

f1



Minimize reconstruction levels/decision boundaries:

•

 

efficiency depends on the amount of correlation between f1

 

and f2

•

 

finding joint density is difficult
(Ex):  Extreme case –

 

vector level assignment for 256 x 256
Joint density P(x1

 

, x2

 

, …, x256 )

 

is difficult to get 
Law of diminishing returns comes into play

Vector Case (cont.)



Codeword Design:  Bit Allocation
•

 

After quantization, need to assign binray

 

codeword to each 
quantization symbol.

•

 

Options:
–

 

Uniform:  equal number of bits to each symbol → inefficient
–

 

Non-uniform:  short codewords

 

to more probable symbols, and 
longer codewords

 

for less probable ones.
•

 

For non-uniform, code has to be uniquely decodable:
–

 

Example:  L = 4, r1

 

→

 

0, r2

 

→ 1, r3  → 10, r4

 

→ 11
–

 

Suppose we receive 100.
–

 

Can decode it two ways:  either r3

 

r1

 

or r2

 

r1

 

r1

 

.
–

 

Not uniquely decodable.
–

 

One codeword is a prefix

 

of another one.
•

 

Use Prefix codes instead to achieve unique decodability.



Overview
•

 

Goal:  Design variable length codewords

 

so that the average bit rate is 
minimized.

•

 

Define entropy to be:
pi

 

is the probability that the ith

 

symbol is

 

ai

 

. 
•

 

Since                    we have                          
•

 

Entropy:  average amount of information a message contains.
•

 

Example:  L = 2, p1

 

= 1, p2

 

= 0    →

 

H = 0.  A symbol contains NO 
information.

•

 

p1 = p2 = ½

 

→

 

H = 1

 

Maximum possible value.

1

1/2 10

H

p



Overview

•

 

Information theory:  H

 

is the theoretically minimum possible 
average bite rate.

•

 

In practice, hard to achieve
•

 

Example:  L

 

symbols,                                        uniform length 
coding can achieve this.

•

 

Huffman coding tells you how to do non-uniform bit allocation to 
different codewords

 

so that you get unique decodability

 

and get 
pretty close to entropy.



Methods of Bit Assignment (cont.)

Example:

Huffman Coding:

 

A practical method to achieve near-optimum performance.

Figure10.16
Illustration of codeword generation in Huffman cding.  Message possiblities

 
with higher probabilities are assigned with shorter codewords.



Methods of Bit Assignment (cont.)

•

 

Uniform-length codeword:  3 bits/message

•

 

Huffman coding:  

•

 

Entropy:  



Methods of Bit Assignment (cont.)

Vector Case

Comments:
1.

 

Finding pi for a large number of elements in the vector is difficult.
2.

 

Law of diminishing returns comes to play.
3.

 

Huffman Coding can be used.

f1

 

, f2 Prob.



Arithmetic Coding

•

 

Why not use Huffman?
•

 

Can show rate of Huffman code is within

 

Pmax

 

+ 0.86 of

 Entropy.
Pmax

 

= Prob. of most frequent symbol
•

 

Example:
iid source = {a1

 

, a2

 

, a3 }
P(a1 ) = 0.95

 

P(a2 ) = 0.02

 

P(a3 ) = 0.03
Entropy = 0.335  bits/symbol
Huffman :  1.05  bits/symbol

Huffman 213% of Entropy!!



Mechanics fo
 

Arithmetic Coding

•
 
Two Steps:

1.
 

Generate a tag
2.

 
Assign a binary code to the tag

•
 
Tag Generation:

A sequence of symbols from an alphabet source 
with a given Pdf

 
results in a unique sub-interval in 

[0, 1].



Example of Tag Generation:
•

 

A = {a1

 

, a2

 

, a3

 

} P(a1

 

) = 0.7
P(a2

 

) = 0.1

 

P(a3

 

) = 0.2
•

 

Suppose we encode a1

 

, a2

 

, a3

•

 

Interval [0.546, 0.56] uniquely specifies sequence (a1

 

, a2

 

, a3

 

)

0 0

0.7
0.8

1.0

0.49
0.56

0.70 0.56 0.56

0.539
0.546

0.5558
0.5572

0.49 0.546

a1 a2 a3



Deciphering the Tag:
•

 
Suppose we know 3 symbols resulted in subinterval 
[0.546, 0.56]

•
 

Decode the symbols?
•

 
Is the first symbol a1

 

or a2

 

or a3

 

?
a1

 

[0, 0.7]
a2

 

[0.7, 0.8]
a3

 

[0.8, 1]
•

 
Is the second symbol a1

 

, a2

 

, or a3

 

?
a1

 

[0, 0.49]
a2

 

[0.49, 0.56]
a3

 

[0.56, 0.7]

0

0.49
0.56

0.7

0.49

0.56

0.539
0.546

a1

a2



Generating a binary code:
•

 
Uniqueness:

•
 

Consider sequence of symbols

•
 

Compute 
If iid

 
source  ⇒

 
easy to compute

•
 

Write down binary representation of the point in the 
middle of subinterval for      .

•
 

Truncate it to 

•
 

Can show it is unique.



Example Generating a binary code:
•

 
Consider subinterval [0.546, 0.56]

•
 

Midpoint:  0.553

•

•
 

# of bits =

•
 

Binary Representation of 0.553

•
 

Truncate to 8 bits  ⇒
 

Binary Representation:

10001101



Efficiency of Arithmetic Code

•
 

We can show 
°

 
m # of symbols in sequence

°
 

lA
 

=
 

average length per symbol
°

 
H(X)

 
= entropy of source

°
 

Assumes iid
 

source.

•
 

Observe:  By increasing length of sequence, can get 
arbitrarily close to entropy.



Dictionary Techniques
•

 
Huffman and arithmetic coding assumed i.i.d. 
sources

•
 
Most sources are correlated

•
 
Main idea:  

1.
 

Build a list of commonly occurring patterns

2.
 

Transmit index in the list.

•
 
Exploits fact that certain patterns recur frequently.

•
 
Consider 2 cases:

1.
 

Static Dictionary

2.
 

Dynamic Dictionary



Static Dictionary:
•

 

Suppose five letter alphabet source:
A = {a, b, c, d, r}

•

 

Using statistics of source, build dictionary

Entry
Code

•

 

Encode     a b r a c a d a b r a
1.

 

Read ab

 

101
2.

 

Read ra

 

not in dictionary
3.

 

Read  r

 

100
4.

 

Read ac

 

110
5.

 

……..
101

 

100

 

110

 

111

 

101

 

100

 

000
ab

 

r

 

ac

 

ad

 

ab

 

r

 

a
•

 

Opposite of Huffman coding:

ad ac ab r d c b a

111 110 101 100 011 010 001 000



Adaptive Dictionary:
•

 

Ziv

 

Lempel 1977 + 1978
•

 

LZ1    →

 

1977

 

LZ2    →

 

1978
•

 

LZ1 discussed Here.
•

 

Basic idea:
Dictionary portion of previously encoded sequence

•

 

Sliding window:
1.

 

Search buffer
2.

 

Lookahead

 

buffer
Match pointer

c x p a

Search buffer

 

Look ahead buffer

x a b p a x a d a b a p p a p



Example
. . . c a b r a c a d a b r a r r a r r a d . . . 
–

 
Window = 13

–
 

Look ahead buffer = 6
–

 
Search buffer = 7

. . . . r a . . .

1.
 

No match to d
 
→

 
< 0, 0, C(d) >

. . . . c
 

a r . . .

c  a b r a c a d a b r a r 

a b r a c a d a b r a r r



Example (cont.)

o = 2
 

l = 1 
2.

 
Match for a: 0 = 4

 
l

 
= 1

0 = 7
 

l
 

= 4

< 7, 4, C (r) >

a d a b r a r r a r r a d



Example (cont.)

3.
 

Match for r:

0 = 1
 

l
 

= 1 
0 = 3

 
l

 
= 5

< 3, 5, C (d) >

Exceeds the boundary between 
search and look ahead buffer



Encoding steps:
1.

 

Move search pointer back until match in search buffer.

2.

 

Offset       distance of pointer from look ahead buffer.

3.

 

Do consecutive symbols of pointer match also?

4.

 

Search the search buffer for the longest match.

5.

 

Length of match      # of consecutive symbol match.

6.

 

Send <o, l, c)
o = offset

l

 

= match length

C = codeword of symbol in LA buffer, following match.

Example:  <7, 2, codeword for a >



Adaptive Dictionary

•
 

Why send C?

–
 

Just in case no match

•
 

Total # of bits:

S = size of search buffer

W = Size of window (search + LA)

A = size of source alphabet



What to Code 
(Classification of Image Coding Systems)

1.
 

Waveform Coder (code the intensity)
•

 
PCM (Pulse Code Modulation) and its 
improvements

•
 
DM (Delta Modulation)

•
 
DPCM (Differential Pulse Code Modulation)

•
 
Two-channel Coder



What to Code 
(Classification of Image Coding Systems) 

(cont.)

2.
 

Transform Coder (code transform coefficients of 
an image)

•
 
Karhunen-Loeve

 
Transform

•
 
Discrete Fourier Transform

•
 
Discrete Cosine Transform

3.
 

Image Model Coder
•

 
Auto-regressive Model for texture

•
 
Modelling

 
of a restricted class of images

NOTE:
 

Each of the above can be made to be adaptive



Waveform Coder

Uniform 
Quantizer

•
 

PCM Coding

Non-Linearity Non-Linearity-1Uniform 
Quantizer

•
 

Very simple
•

 
Typically requires over 5-6 bits/pixel for good quality

•
 

False contours for low-bit rate case



Improvements of PCM 

Transmitter Receiver

1.

 

Roberts’

 

Pseudo-Noise Technique:

Uniform 
Quantizer+ +

+

+ +
_

P (w ) =

(
1
¢

¡ ¢
2
· w 0 · ¢

2

0 o th e rw is e
P (w ) =

(
1
¢

¡ ¢
2
· w 0 · ¢

2

0 o th e rw is e



Improvements of PCM (cont.)

Pixel Spacing

(a)  Nominal Quantization

i-1

i+1

i

Original Image signal

Reconstructed Image Signal

Decision Level

Resonstruction

 

Level

• False contours disappear –

 

replaced 
by additive random noise

(b)  One bit Pseudonoise



Improvements of PCM (cont.)

i-1

i+1

i

i-2

i+2

(c)  Original Image Signal Plus Noise

i-1

i+1

i

i+2

i-2

(d)  Quantized Image Signal Plus Noise



Improvements of PCM (cont.)

(e)  Pseudonoise

 

Quantization

i-1

i+1

i

i-2

i+2 Original Image signal

Reconstructed Image Signal



Improvements of PCM (cont.)

2.

 

Roberts’

 

Pseudo-Noise Technique with Noise Reduction:

Transmitter Receiver

Uniform 
Quantizer+ +

+

+ +
_

Noise 
Reduction



Figure 10.21  
Example of quantization
Noise reduction in PCM speech coding.
(a)

 

Segment of noise-free voiced speech;
(b)

 

PCM-coded speech at 2 bits / sample;
(c)

 

PCM-coded speech at 2 bits / sample 
by Roberts’

 

pseudonoise

 

technique; 
(d) PCM-coded speech at 2 bits / sample with 

Quantization noise reduction.



Figure 10.22
Example of quantization noise reduction in PCM image coding.  (a) Original 
image of 512 x 512 pixels; (b) PCM-coded image at 2 bits/pixel.

(a) (b)



Figure 10.22
Example of quantization noise reduction in PCM image coding. (c)

 

PCM-

 
coded image at 2 bits/pixel by Roberts’s pseudonoise

 

technique;  (d)  PCM-

 
coded image at 2 bits/pixel with quantization noise reduction.

(c) (d)



Delta Modulation (DM)

Transmitter

Transmitter

1 bit
quantization+_

+

+



Delta Modulation (DM) (cont.)

Receiver
Receiver

+



Delta Modulation (DM) (cont.)

• Needs over 2-3 bits/pixel to get good quality

Figure 10.26
Granular noise and slope-overload distortion in delta modulation.



Figure 10.27
Example of delta-modulation (DM)-coded image.  The original image used is 
the image in Figure 10.22(a).  (a)  DM-coded image with      = 8% of the 
overall dynamic range.  NMSE = 14.8%, SNR = 8.3 dB; (b) DM-coded image 
with      = 15%, NMSE = 9.7%, SNR = 10.1 dB.

(a) (b)



Figure 10.28
DM-coded image at 2 bits/pixel.  The original image 
used is the image in Figure 10.22(a).  NMSE = 2.4%, 
SNR = 16.2 dB.



Differential Pulse Code Modulation (DPCM)

Transmitter
PCM+_

+

+
+

+

Prediction

Previously coded pixel intensities

The Auto-regressive Model parameters are obtained from the image by solving a linear set 
of equations or by a Markov process assumption



Differential Pulse Code Modulation 
(DPCM) (cont.)

Receiver

+

Prediction

• Requires 2-3 bits/pixel for good quality image



Figure 10.30
Example of differential pulse code modulation (DPCM)-coded 
image at 3 bits/pixel.  Original image used is the image in Figure 
10.22(a).  NMSE = 2.2%, SNR = 16.6 db.



Transform Image Coding
Transmitter

Transform Quantization Codeword
Assignment

Inverse
Transform Decoder

Receiver

What is exploited:  Most of the image energy is concentrated in a small number 
of coefficients for some transforms

• the more energy compaction, the better



Transform Image Coding

Some considerations:
•

 

Energy compaction in a small number of coefficients
•

 

Computational aspect:  important (subimage

 

by 
subimage

 

coding –

 

8 x 8 –

 

16 x 16)
•

 

Transform should be invertible
•

 

Correlation reduction



Examples of Transforms
1.

 

Karhunen-Loeve

 

Transform

Covariance



Examples of Transforms (cont.)

Comments:

• Optimal in the sense that the coefficients are completely uncorrelated

• Finding                                 is hard

• No simple computational algorithm

• Seldom used in practice

• On average, first M coefficients have more energy than any

 

other 
transform

• KL is best among all linear transforms from:  (a) compaction 
(b) decorrelation



Need better scan of Figure 5.3.7



Figure 5.3.7  
Images used for coding and statistics.  (a) “Karen”

 

has 
much more stationary Statistics than (b) “Stripes.”



Figure 5.3.7  
Images used for coding and statistics.  (a) “Karen”

 

has much 
more stationary Statistics than (b) “Stripes.”



Figure 5.3.22
Truncation PSNR versus block size for separable transforms with the image “Karen”

 

when 60 
percent of the coefficients are kept (p=0.6).

Basic Compression Techniques



Figure 5.3.21
Comparison of truncation errors using separable, two-dimensional 
blocks with the image “Karen”.  The coefficients having the largest MSV 
are transmitted.  (a) 4 x 4 blocks, N = 16.  (b) 16 x 16 blocks, N = 256.

(a)



Figure 5.3.21
Comparison of truncation errors using separable, two-dimensional 
blocks with the image “Karen”.  The coefficients having the largest MSV 
are transmitted.  (a) 4 x 4 blocks, N = 16.  (b) 16 x 16 blocks, N = 256.

(b)



Discrete Cosine Transform

DFT

Comments:
• Good energy compaction (better than DFT)

Sharp discontinuity No sharp discontinuity



Discrete Cosine Transform (cont.)
Comments (cont.):

• Fast algorithms
• All real coefficients
• Most often used in practice  (good quality image at bit rate less than 1 bit/pixel)
• Other transforms:  Hadamard, Haar, Slant, Sine, …

The sequence Y(k)

 

is related to y(n)

 

through the 2N-point inverse DFT relation 
given by

From (3.20), x(n)

 

can be recovered from y(n)

 

by 

(3.28)

x(n) =

(
y(n); 0 · n · N ¡ 1

0, otherwise
(3.29)



Discrete Cosine Transform (cont.)
From (3.27), (3.28), and (3.29), and after some algebra,

Equation (3.30) can also be expressed as 

where

Equation (3.31) is the inverse DCT relation.  From (3.25) and (3.31),

x(n) =

(
1
N

h
Cx(0)

2 +
PN¡1

k=1 Cx(k)cos ¼
2N k(2n + 1)

i
; 0 · n · N ¡ 1

0, otherwise

(3.30)

x(n) =

(
1
N

PN¡1
k=0 w(k)Cx(k)cos ¼

2N k(2n + 1); 0 · k · N ¡ 1

0, otherwise

(3.31a)

w(k) =

(
1
2 ; k = 0

1, 1 · k ·N ¡ 1,

(3.31b)



Discrete Cosine Transform (cont.)

From the derivation of the DCT pair, the DCT and inverse DCT can

 

be 
computed by

Computation of Discrete Cosine Transform

Step 1. y(n) = x(n) + x(2N ¡ 1¡ n)

Cx(k) =

(PN¡1
n=0 2x(n)cos ¼

2N k(2n + 1); 0 · k · N ¡ 1

0, otherwise
Cx(k) =

(PN¡1
n=0 2x(n)cos ¼

2N k(2n + 1); 0 · k · N ¡ 1

0, otherwise
(3.32a)

x(n) =

(
1
N

PN¡1
k=0 w(k)Cx(k)cos ¼

2N k(2n + 1); 0 · n · N ¡ 1

0, otherwise
(3.32b)

Discrete Cosine Transform Pair



Discrete Cosine Transform (cont.)

Step 2. Y (k) = DFT [y(n)](2N ¡ point DFT computation)

Step 3. Cx(k) =

(
W

k=2
2N Y (k); 0 · k · N ¡ 1

0; otherwise

Computation of Inverse Discrete Cosine Transform

Step 2. y(n) = IDFT [Y (k)](2N ¡ point inverse DFT computation)

Step 1. Y (k) =

8><>:
W

¡k=2
2N Cx(k); 0 · k · N ¡ 1

0; k = N

¡W
¡k=2
2N Cx(2N ¡ k); N + 1 · k · 2N ¡ 1



Discrete Cosine Transform (cont.)
Computation of Inverse Discrete Cosine Transform (cont.)

Step 3. x(n) =

(
y(n); 0 · n · N ¡ 1

0; otherwise

In computing the DCT and inverse DCT, Steps 1 and 3 are computationally 
quite simple.  Most of the computations are in Step 2, where a 2N-point

 
DFT is computed for the DCT and a 2N-point

 

inverse DFT is computed for 
the inverse DCT.  The DFT and inverse DFT can be computed by using 
fast Fourier transform (FFT) algorithms.  In addition, because  has 
symmetry, the 2N-point

 

DFT and inverse DFT can be computed (see 
Problem 3.20)

 

by computing the N-point

 

DFT and the N-point

 

inverse DFT 
of an N-point

 

sequence.  Therefore, the computation involved in using the 
DCT is essentially the same as that involved in using DFT.  

y(n)



Discrete Cosine Transform (cont.)
Computation of Inverse Discrete Cosine Transform (cont.)

In the derivation of the DCT pair, we have used an intermediate sequence           
that has symmetry and whose length is even.  The DCT we derived is thus 
called an even symmetrical DCT.  It is also possible to derive the odd 
symmetrical DCT pair in the same manner.  In the odd symmetrical

 

DCT, the 
intermediate sequence      used has symmetry, but its length is odd.  For 
the sequence           shown in Figure 3.9(a), the sequence     used is 
shown in Figure 3.9(b).

 

The length of           is,            and          , obtained 
by repeating           every               points, has no artificial discontinuities.  
The detailed derivation of the odd symmetrical DCT is considered

 

in Problem 
3.22.

 

The even symmetrical DCT is more commonly used, since the odd 
symmetrical DCT involves computing an odd-length DFT, which is not very 
convenient when one is using FFT algorithms.

~y ( n )

y(n)
y(n)

y ( n )

x(n)
y(n)y(n) 2N¡1

2N ¡ 1y(n)y(n)



Discrete Cosine Transform (cont.)
Computation of Inverse Discrete Cosine Transform (cont.)

0 1 2 3 4 5 6
n

0 1 2 3
n

x(n)

y(n) = x(n) + x(2N ¡ 2¡ n)¡ x(N ¡ 1)±(n¡ (N ¡ 1))

(a) (b)
Figure 3.9
Example of (a)          and (b)                                 .
The sequence          is used in the intermediate step in defining the odd 
symmetrical discrete cosine transform of             .          

x(n) y(n) =x(n)+x(2N¡2¡n)¡x(N¡1)±(n¡(N¡1))
y(n)

x(n)



DCT
•

 
Signal independent

•
 

ρ
 

1 : KLT           DCT
For first order Markov Image model

•
 

Type II DCT:    
S(K1; K2) =

r
4

N2
C(K1)C(K2)

N¡1X
n1=0

N¡1X
n2=0

s(n1; n2)cos

μ
¼2(n1 + 1)K1

2N

¶

cos

μ
¼2(n2 + 1)K2

2N

¶

C(K) =

(
1p
2

K=o

1 otherwise



DCT (cont.)

Figure 12.4

 

The basis matrices for the DCT



DCT (cont.)

The outer products of the rows are shown in Figure 12.4.  Notice

 

that the 
basis matrices show increased variation as we go from the top left of the 
matrix, corresponding to the θ00

 

coefficient, to the bottom right matrix, 
corresponding to the θ(N-1)(N-1)

 

coefficient.

The DCT is closely related to the discrete Fourier transform (DFT) mentioned 
in Chapter 11, and in fact can be obtained from the DFT .  However, in terms 
of compression, the DCT performs better than the DFT.

Recall that when we find the Fourier coefficients for a sequnece

 

of length N, 
we assume that the sequence is periodic with period N.  If the original 
sequence is as shown in Figure 12.5a, the DFT assumes that the sequence 
outside the interval of interest behaves in the manner shown in Figure 12.5b.



DCT (cont.)

This introduces sharp discontinuities, at the beginning and end of the 
sequence.  In order to represent these sharp discontinuities the

 

DFT 
needs nonzero coefficients for the high-frequency components.  As 
these components are needed only at the two endpoints of the 
sequence, their effect needs to be cancelled out at other points

 

in the 
sequence.  Thus, the DFT adjusts other coefficients accordingly.

 

When 
we discard the high-frequency coefficients (which should not have been 
there anyway)  during  the compression process, the coefficients

 

that 
were cancelling out the high-frequency effect in other parts of the 
sequence result in the introduction of additional distortion.



Discarding Transform Coefficients
Threshold coding:  Coefficients with values above a given threshold are coded.

•

 

Location as well as amplitude has to be coded
•

 

Run-length coding is useful (Many zeros)

Figure 10.44
Example of a bit allocation map at 1 bit/pixel for zonal discrete cosine 
transform image coding.  Block size = 16 x 16 pixels.



Discarding Transform Coefficients
Zonal coding:  Eliminate coefficients in a fixed zone.

# of Bits for coefficient i with variance 62
i62
i

bi =
B

M
+

1

2
log26i

2 ¡ 1

2M

MX
i=1

log26
2
ibi =

B

M
+

1

2
log26i

2 ¡ 1

2M

MX
i=1

log26
2
i

M = # of coefficients to be coded
B = total # of bits



Scalar Quantization of a Vector Source
•

 

Assume N scalars: 
•

 

Each fi is quantized to Li reconstruction levels.
•

 

Total of B bits to code N scalars.
•

 

Optimum bit allocation strategy depends on (a) error criterion and (b) pdf

 

of 
each random variable.

•

 

Assume we minimize MSE:                                   with respect to Bi the

number of bits for the ith scalar for
•

 

Assume pdf

 

of all fi is the same except they have different variances.
•

 

Use Lloyd Max quantizer.
•

 

Under these conditions we have: 

•

 

is the variance of fi :

• Li is the number of reconstruction levels for source i.             

fi 1 · i · Nfi 1 · i · N

NX
i=1

E
h
(f 0i ¡ fi)

2
iNX

i=1

E
h
(f 0i ¡ fi)

2
i

1 · i · N1 · i · N

Bi =
B

N
+

1

2
log

¾2
i£

¦N
j=1¾

2
j

¤1=N
Bi =

B

N
+

1

2
log

¾2
i£

¦N
j=1¾

2
j

¤1=N

¾2
i¾2
i Li =

¾i£
¦N

j=1¾i

¤1=N
2B=NLi =

¾i£
¦N

j=1¾i

¤1=N
2B=N



DCT-Coded Images

Figure 10.47
DCT-coded image with visible 
blocking effect.



DCT-Coded Images (cont.)

Figure 10.48
Example of DCT image coding.  (a) DCT-coded image at 1 bit/pixel, NMSE = 0.8%, 
SNR = 20.7 dB.  (b) DCT-coded image at

 

½

 

bit/pixel.  NMSE = 0.9%, SNR = 20.2 
dB.

(a) (b)



Quantization of DCT Coefficients

Figure 10.46
Illustration of graininess increase due to quantization of DCT coefficients.  A 
2-bit/pixel uniform quantizer

 

was used to quantize each DCT coefficient 
retained to reconstruct the image in Figure 10.45(b)



Blocking Effect Reduction

Figure 10.50
Example of blocking effect reduction using a filtering method.  (a) Image 
of 512 x 512 pixels with visible blocking effect.  The image is coded by a 
zonal DCT coder at 0.2 bit/pixel.  (b) Image in (a) filtered to reduce the 
blocking effect.  The filter used is a 3 x 3-point h(n1

 

, n2

 

) with h(0, 0)=1/5 
and h(n1

 

, n2

 

) = 1/10 at the remaining eight points.

(a) (b)



Adaptive Coding and Vector 
Quantization

Transform coding techniques can be made adaptive to the local characteristics 
within each subimage.  In zonal coding, for example, the shape and size of the 
zone can be adapted.  

1-D waveform reconstruction
along each column

1-D transform
along each row

Transmitter

1-D waveform coding
along each column

Codeword
assignment

1-D inverse transform
along each row Decoder

Receiver

f(n1; n2)f(n1; n2)

f(n1; n2)f(n1; n2)

Tf (k1; n2)Tf (k1; n2)

T̂f (k1; n2)T̂f (k1; n2)

T̂
0
f (k1; n2)T̂
0
f (k1; n2)

T̂
0
f (k1; n2)T̂
0
f (k1; n2)

Figure 10.51  Hybrid transform/waveform coder.



Iterative Procedures for Reduction 
of Blocking Effects in Transform 

Image Coding
 by

 Ruth Rosenholtz
 

and Avideh
 

Zakhor



Hybrid Coding
•

 
Combines waveform and transform coding.
–

 
Implementation is simpler than 2-D transform coding.

–
 

Better performance than waveform coding.

•
 

Basic Idea:
–

 
Transform an image f(n1

 

, n2

 

)
 

by a 1-D transform such 
as a 1-D DCt

 
along each row to obtain Tf

 

(k1

 

, n2

 

).
–

 
Remove more redundancy along each column by 
DPCM.



Hybrid Coding (cont.)

•
 

Hybrid coding useful in interframe
 

coding.

1-D waveform reconstruction
along each column

1-D transform
along each row

Transmitter

1-D waveform coding
along each column

Codeword
assignment

1-D inverse transform
along each row Decoder

Receiver

f(n1; n2)f(n1; n2)

f̂(n1; n2)f̂(n1; n2)

Tf (k1; n2)Tf (k1; n2)

T̂f (k1; n2)T̂f (k1; n2)

T̂
0
f (k1; n2)T̂
0
f (k1; n2)

T̂
0
f (k1; n2)T̂
0
f (k1; n2)

Figure 10.51  Hybrid transform/waveform coder.



Hybrid Coding (cont.)

Waveform reconstruction
along n3

at each (k1 , k2 )

2-D transform
for each n3

Transmitter
Waveform coding 

along n3
at each (k1 , k2 )

Codeword
assignment

2-D inverse transform
for each n3

Decoder

Receiver

f(n1; n2; n3)f(n1; n2; n3)

f̂(n1; n2; n3)f̂(n1; n2; n3)

Tf (k1; k2; n3)Tf (k1; k2; n3)

T̂f (k1; k2; n3)T̂f (k1; k2; n3)

T̂
0
f (k1; k2; n3)T̂
0
f (k1; k2; n3)

T̂
0
f (k1; k2; n3)T̂
0
f (k1; k2; n3)

Figure 10.51  Interframe

 

hybrid coder.



Two-Channel Image Coder

fLS(n1;n2)fLS(n1;n2)

Transmitter
Transmit

Transmit

LPF PCM PCMSubsample Interpolate +

f(n1;n2)f(n1;n2) fL(n1;n2)fL(n1;n2) f̂LS(n1;n2)f̂LS(n1;n2) fH(n1;n2)fH(n1;n2) f̂H(n1;n2)f̂H(n1;n2)

-
+

f̂L(n1;n2)f̂L(n1;n2)

Receiver
Interpolation

+

f̂LS(n1; n2)f̂LS(n1; n2)
f̂L(n1; n2)f̂L(n1; n2)

f̂(n1; n2)f̂(n1; n2)f̂H (n1; n2)f̂H (n1; n2)

+

-

fL

 

(n1

 

, n2

 

):   Can be under-sampled (typically by 8 x 8), but requires above 5 bits/sample.

f H

 

(n1

 

, n2

 

):  Cannot be under-sampled, but can be coarsely quantized (2-3 bits/pixel).

Bit rate ≈
5

64
+ 2¡ 3 bits/pixel ¼ 2¡ 3 bits/pixel

5

64
+ 2¡ 3 bits/pixel ¼ 2¡ 3 bits/pixel

Coarser amount of ?? 
Some noise is less visible 
in high contrast region.



Two-Channel Image Coding (cont.)

Figure 10.32
Example of image coding by at two-channel coder.  (a) Original image 
of 512 x 512 pixels; (b) coded image at 3 1/8 bits/pixel.  NMSE = 1.0%, 
SNR = 19.8 dB.



•

 

Basic Idea:

 

Successive lowpass

 

filtering and subsampling.

•

 

Filtering: 

•

 

Subsampling:

Pyramid Coding and Subband
 

Coding

SubsampleLowpass

 

filtering

fi(n1; n2)fi(n1; n2) fL
i (n1; n2)fL
i (n1; n2) f1+1(n1; n2)f1+1(n1; n2)

Figure 10.33
Process of generating the i + 1th-level image                      from 
the ith-level image                 in Gaussian pyramid image 
representation.    

fi+1(n1; n2)fi+1(n1; n2)

fi(n1; n2)fi(n1; n2)

fi+1(n1; n2) =

(
fL
i (2n1;2n2) 0· n1; n2 · 2M¡1

0; Otherwise
fi+1(n1; n2) =

(
fL
i (2n1;2n2) 0· n1; n2 · 2M¡1

0; Otherwise

fL
i (n1; n2) = fi(n1; n2) ¤ h(n1; n2)fL
i (n1; n2) = fi(n1; n2) ¤ h(n1; n2)



Pyramid Coding and Subband
 

Coding (cont.)

•

 

Type of filter determines the kind of pyramid.
•

 

Gaussian pyramid: h(n1 , n2 ) = h(n1 )h(n2 ).

a is between .3 and .6

h(n) =

8><>:
a n = 0
1
4

n = §1
1
4
¡ a

2
n = §2

h(n) =

8><>:
a n = 0
1
4

n = §1
1
4
¡ a

2
n = §2



Pyramid Coding and Subband
 

Coding (cont.)
•

 

Application to image coding:
–

 

Code successive images down the pyramid from the ones above it.
–

 

Use intrafram

 

coding techniques to code the image at top of the pyramid.
–

 

Interpolate                        to obtain a prediction for   .

–

 

Code the prediction error:                                      to construct 

–

 

Repeat until the bottom level image, i.e. the original is reconstructed.

•

 

The sequence                      is a Gaussian Pyramid.
•

 

The sequence                      is a Laplacian

 

Pyramid. 
•

 

Other examples of Pyramid coding:
–

 

Subband

 

coding.
–

 

Wavelet coding.

fi=1(n1; n2)fi=1(n1; n2) fi(n1; n2)fi(n1; n2)

f̂i(n1; n2) = I[fi=1(n1; n2)]f̂i(n1; n2) = I[fi=1(n1; n2)]

ei(n1; n2) = fi(n1; n2)¡ f̂i(n1; n2)ei(n1; n2) = fi(n1; n2)¡ f̂i(n1; n2)

fi(n1; n2)fi(n1; n2)

fi(n1; n2)fi(n1; n2)

ei(n1; n2)ei(n1; n2)





Gaussian Pyramid Representation

Figure 10.36
Example of the Gaussian pyramid representation for image of 513 x 513 pixels 
with K = 4.



Laplacian
 

Pyramid
 

Representation

Figure 10.38
Example of the Laplacian

 

pyramid image representation with K = 4.  The 
original image used is the 513 x 513-pixel image f0

 

(n1

 

, n2

 

)

 

in Figure 10.36 
e1

 

(n1

 

, n2

 

)

 

for 0 ≤

 

i ≤

 

3

 

and f4

 

(n1

 

, n2

 

).



Laplacian
 

Pyramid Image Coding

Figure 10.39
Example of the Laplacian

 

pyramid image coding with K = 4

 

at ½

 

bit/pixel.  
The original image used is the 513 x 513-pixel image f0

 

(n1

 

, n2

 

)

 

in Figure 
10.36.



Subband
 

Coding

X(n) X̂̂X

H1

H0 ↓

 

2

↓

 

2

↑

 

2

↑

 

2 G1

G0

∑

….

….

X̂(!) =
1

2
[H0 (!) G0 (!) + H1 (!) G1 (!)] X (!) +X̂(!) =

1

2
[H0 (!) G0 (!) + H1 (!) G1 (!)] X (!) +

1

2
[H0 (! + ¼) G0 (!) + H1 (! + ¼) G1 (!)] X (! + ¼)

1

2
[H0 (! + ¼) G0 (!) + H1 (! + ¼) G1 (!)] X (! + ¼)

Consider QMF Filters:
H0 (!) = G0 (¡!) = F (!)H0 (!) = G0 (¡!) = F (!)

H1 (!) = G1 (¡!) = ejwF (¡! + ¼)H1 (!) = G1 (¡!) = ejwF (¡! + ¼)

! X̂ (!) =
1

2
[F (!) F (¡!) + F (¡! + ¼) F (! + ¼)] X (!)! X̂ (!) =

1

2
[F (!) F (¡!) + F (¡! + ¼) F (! + ¼)] X (!)



Subband
 

Coding (cont.)

IMPOSE: jF (!)j2 + jF (! + ¼)j2 = 2jF (!)j2 + jF (! + ¼)j2 = 2

! X̂ (!) = X (!) ! Perfect Reconstruction! X̂ (!) = X (!) ! Perfect Reconstruction



Filter Design

•

 

QMF filters:

N = # of taps

•

 

Johnston’s filter coefficients:

→ Symetric

 

→ NPR

8 tap Johnston filters:
h(0) = h(7) =

 

0.00938
h(1) = h(6) =

 

0.06942
h(2) = h(5) = -

 

0.07065
h(3) = h(4) =

 

0.489980

h1(n)=(¡1)nh0(N¡1¡n)h1(n)=(¡1)nh0(N¡1¡n)

h0 (N ¡ 1 ¡ n) = h0 (n)h0 (N ¡ 1 ¡ n) = h0 (n)



Filter Design (cont.)
•

 

Cannot have linear phase FIR filters for QMF condition except 
for trivial 2 tap filter

→ Amplitude distortion
•

 

Well known filters

a(n) = [1, 2, 1]
b(n) = [-1, 2, 6, 2, -1]

→

 

Simple to implement 
Proposed by LeGall

H0 (!) = A (!) G0 (!) = B (!)H0 (!) = A (!) G0 (!) = B (!)

H1 (!) = ej!B (! + ¼)H1 (!) = ej!B (! + ¼)

G1 (!) = e¡j!A (! + ¼)G1 (!) = e¡j!A (! + ¼)



Filter Design (cont.)

h(0) =
 

0.03489
h(1) = -0.0109
h(2) = -0.0628
h(3) = 0.2239
h(4) = 0.55685
h(5) = 0.35797
h(6) = -0.0239
h(7) = -0.0759

• Smith and Barnwell



Bit Allocation in Subband
 

Coding:

R   = Average # of bits per sample.

RK = Average # of bits per sample of subband
 

K

M   = # of subbands

= variance of coefficients in subband
 

K:¾2
K¾2
K

RK = R +
1

2
log 2

¾2
KQM

K=1

¡
¾2

K

¢ 1
M

RK = R +
1

2
log 2

¾2
KQM

K=1

¡
¾2

K

¢ 1
M



2D Subband
 

Coding
•

 

Separable  → Easy to implement
•

 

Nonseparable

Separable subband

 

Coding:

X(n1

 

, n2

 

)

H0

 

y

H1

 

y

H0

 

y

H1

 

y

H0

 

x

H1

 

x

Analysis



Frequency Domain

¡¼¡¼ +¼+¼ !!

highpass

Lowpass

1D



Frequency Domain (cont.)

2D

1 = Lx

 

Ly
2 = Lx

 

Hy
3 = Hx

 

Ly
4 = Hx

 

Hy

4 2 2 4

3 1 1 3

3 1 1 3

4 2 2 4

¡¼¡¼ +¼+¼

¡¼¡¼

+¼+¼

!x!x

!y!y



Wavelets
•

 

A special kind of Subband

 

Transform
•

 

Historically developed independent of subband

 

coding

X(n)

H1

H0 ↓

 

2

↓

 

2

↓

 

2

↓

 

2

H1

H0
…

…

H1

H0

H0

 

H1
Designed specially to be 
Wavelet Decomposition

Analysis

X(!)X(!)

¦¦
!!

0
4 3 2 1



Famous Wavelet Filters

•
 

Daubechies
•

 
Haar

•
 

Coiflet
4 Tap Daubechies

 
Low Pass

h(0) =
 

0.4829
h(1) = 0.8365
h(2) = 0.22414
h(3) = -0.1294



Fractal Compression
•

 
Founders:  Manderbroth

 
and Barnsley

•
 

Basic Idea:  fixed point transformation
•

 
X0 is fixed point of function f if f(X0 ) = X0

•
 

Example:  Transformation
 

ax + b has a fixed point
 

X0 
given by:

 
X0 = aX0 + b

•
 

To transmit
 

X0 , send
 

a , b
Then iterate:

will converge regardless of initial guess.

X
(n+1)
0 = aX

(n)
0 + bX

(n+1)
0 = aX

(n)
0 + b



Image Compression

•
 

Think of Image I as array of numbers
•

 
Find a function f such that f(I) = I

•
 

If # of bits to transmit f is smaller than I, achieve 
Compression

•
 

In practice, hard to come up with one transformation 
f, for the whole image.

•
 

Divide up the image into domain and domain and 
Range blocks.



Image Compression (cont.)
•

 
Main idea:

–
 

Divide up image into M x M “Range”
 

blocks
–

 
For each “Range”

 
block find another 2 M x 2 M 

“Domain”
 

block from the same image such that 
for some transformation fK we get fK (DK ) = RK

DK

 

= Domain block k
RK

 

= Range block k
•

 
First publicly discussed by Jacquin

 
in 1989 thesis + 

1992 paper
•

 
Works well if there is self similarity in image.



Image Compression (cont.)

fK

•
 

What should fK do?
–

 
Change size of domain block

–
 

Change orientation of domain block
–

 
Change intensity of pixels



Image Compression (cont.)

•
 

fK consists of 
–

 
Geometric transformation:  gK

–
 

Massic
 

transformation:  mK

•
 

gK : displacement + size + intensity
•

 
mK :  orientation



Transformations:

•

 

gK

 

:   displaces + adjusts intensity
→

 

Easy
•

 

mK

 

:
i

 

can be
•

 

Rotation by 90, 180, -90
•

 

Reflection about horizontal, vertical, diagonal
•

 

Identity map  
•

 

Finding transformations is compute intensive
•

 

Search through all domain blocks + all transformations to find 
“BEST”

 

one
•

 

Encoding more time than decoding

mK(tij) = i(®Ktij +¢K)mK(tij) = i(®Ktij +¢K)



Transformations (cont.):
•

 

If image is divided into
N Range blocks → N transformations fK

 

k

 

= 1, …N
are its representation.

is approximation to    . 

•

 

Collage theorem guarantees convergence to     using any

 arbitrary initial guess for image. 

Î̂I II

f =
[
k fkf =
[
k fk

Î = f
³
Î
´

Î = f
³
Î
´

Î̂I



Insert Fig. 13.11



Vector Quantization

•

 

Let     denote N

 

dimensional vectors consisting of N

 

real valued, 

continuous amplitude scalars.

•

 

Basic Idea:  Map      into L

 

possible N

 

dimensional reconstruction 

vectors      for                    .

•

 

Define a distortion measure:

~f~f

~f~f

~ri~ri 1 · i · L1 · i · L

D = E

"μb~f ¡ ~f

¶T μb~f ¡ ~f

¶#
=

LX
i=1

Z
~f0

2 Ci

μ
~ri ¡ b~f0

¶
d ~f0D = E

"μb~f ¡ ~f

¶T μb~f ¡ ~f

¶#
=

LX
i=1

Z
~f0

2 Ci

μ
~ri ¡ b~f0

¶
d ~f0



Vector Quantization (cont.)

Figure 10.8
Example of vector quantization.  The number of Scalars in the vector 
is 2, and the number of reconstruction levels is 9.



Properties of Vector Quantization

•

 

Removes linear dependency between random variables.
•

 

Removes nonlinear dependency between random variables.
•

 

Explits

 

increase in dimensionality.
•

 

Allows us to code a scalar with less than one bit.
•

 

Computational and storage requirements are far greater than scalar 
quantization.



VQ Removes Linear Dependency

•

 

Linear transformation can 
decorrelate

 

linearly dependent  
(correlated) random variables.

Figure 10.9
Illustration that vector quantization can exploit linear dependence of 
scalars in the vector.  (a) Probability density function        ; 
(b) reconstruction levels (filled-in dots) in scalar quantization; 
(c) reconstruction levels (filled-in dots) in vector quantization.

pf1f2
(f¶1; f¶2)pf1f2
(f¶1; f¶2)

Some distortion but, reduce # of 
reconstruction levels.



VQ Removes Linear Dependency 
(cont.)

Figure 10.10
Result of eliminating linear dependence of the two scalars ƒ1

 

and ƒ2

 

in 
Figure 10.9 by linear transformation of ƒ1

 

and ƒ2

 

.  

Some distortion but, reduce # of 
reconstruction levels.

Rotate (linear transformation) 
ƒ1

 

, ƒ2 to get g1

 

, g2

 

uncorrelated.



VQ Removes Nonlinear Dependency

•

 

Nonlinear dependence cannot be 
eliminated by a linear operator.

Figure 10.11
Illustration that vector quantization can exploit 
nonlinear dependence of scalars in the vector. 
(a) Probability density function                         ; 
(b)

 

Reconstruction levels (solid dots) in scalar 
quantization;
(c)

 

Reconstruction levels (solid dots) in vector 
quantization.

pf1f2
(f¶1; f¶2)pf1f2
(f¶1; f¶2)

Distortion:

a2=2a2=2

Distortion:
5a2=125a2=12



VQ Exploits the Increase in Dimensionality
•

 

The mean square error due to VQ is approximately less than 4 percent 
than scalar quantization with same # of reconstruction levels.

Figure 10.13
Illustration that vector quantization can exploit the 
dimensionality increase.  In this case, the mean square error 
due to vector quantization is approximately 4% less than 
that due to scalar quantization.  (a) Scalar quantization of ƒ1

 
and ƒ2

 

:  (b) vector quantization of ƒ1

 

and ƒ2

 

.

# of reconstruction levels is 2% lower than scalar 
Quantization

 

with same MSE.

⇒

 

# of bits per scalar with VQ

 

_____ < 1.  Look at Figure 10.9. 

Scalar:

 

1 bit per scalar.  
VQ:

 

½

 

bit per scalar.



Codebook Design Algorithms

•
 

K-means algorithm.
•

 
Tree codebooks and binary search.

•
 

Nearest neighbor.



Codebook Design via K-means

•

 

Exploit the following two necessary conditions for the optimal 
solution:
–

 

For a vector       to be quantized to one of the reconstruction levels, the 
optimal quantizer

 

must choose the reconstruction level     , 1 ≤

 

i ≤

 

L, 
which has the smallest distortion between and       .    10(ƒ) = r;  iƒƒ

 d(ƒ, ri

 

) < d(ƒ,rg

 

)  jƒ1

–

 

Each reconstruction level      must minimize the average distortion D

 

in 
Ci

 

.   Minimize                                         w.r.t.

 

.

•

 

Find       and Ci

 

iteratively → Problem:  local versus global minimum 
→ initial guess important.

~f~f

~ri~ri
~f~f ~ri~ri

~ri~ri

E
h
d

³
~f; ~ri

´ ¯̄̄
~f 2 Ci

i
E

h
d

³
~f; ~ri

´ ¯̄̄
~f 2 Ci

i
~ri~ri

~ri~ri



Codebook Design via K-means (cont.)

Figure 10.14
Codebook design by the K-means 
algorithm for vector quantization



Complexity of K-means
•

 

M: training vectors, L:

 

codewords, N:

 

dimensional, R:

 

bits per 
scalar.

•

 

Complexity of Codebook design:
–

 

ML

 

evaluation of distortion measure for each iteration.         
L = 2NR

 

= 2B.

–

 

MLN = NM2NR

 

additions and mults

 

per iteration.
–

 

Example:  N = 10, R = 2, M = 10L

 

results in 100 trillion 
operations per iteration.

–

 

Storage:  MN

 

for training vectors, LN

 

for reconstruction levels  →

 
(M + 2NR)N.

•

 

Complexity of operation at the transmitter.
–

 

Storage of reconstruction levels:  N2NR

 

= NL.  If N = 10

 

and   R = 
2, storage is 10 million.

–

 

Number of arithmetic operations N2NR

 

= NL.  If N = 10

 

and    R = 
2, 10 million operations per look up.



Tree Codebook and Binary Search
•

 

Full search is responsible for exponential growth of the number of 
operations at the transmitter → Tree codebook

•

 

Let L

 

be a power of 2.
•

 

Basic operation of tree codebook design:  
–

 

Use K-means to divide the N

 

dimensional space of      into two 
regions.

–

 

Divide each of the two regions into two more regions using the 
K-means algorithm.

–

 

Repeat step 2 until there are L

 

reconstruction levels.

~f~f

Figure 10.15
Example of a tree codebook.



Complexity of Tree Codebook
•

 

Terms:  M = # of training vectors, L = # of codewords and 
N = Dimension.

•

 

Design complexity:
–

 

Number of arithmetic operators per iteration is 2NMlog2 L, where 
the 2 is the distortion measure evaluated twice and log2 L is the # of 
stages.  For N = 10 and R = 2, the reduction factor compared to the 
full search is 26, 000.

–

 

Storage:  approximately the same as full search algorithm. (Storing 
training data dominates.)

•

 

Operation complexity at transmitter:
–

 

Number of arithmetic operations is 2N2R = 2Nlog2 L.  For N = 10 and     
R = 2, the reduction factor compared to the full search is 26,000.

–

 

Storage:  The codebook must store all the intermediate 
construction levels as well as the final reconstruction levels. →

 Twice as much storage needed as full search.
•

 

Distortion of full search is slightly smaller than that of tree search.



Nearest Neighbor Design Algorithm

•
 

Initially proposed by Equitz.
•

 
Computational complexity grows linearly with the 
training set.

•
 

Find the 2 vectors closest to each other, merge them 
into another vector equal to their mean, repeat this 
process until the number of vectors is L.

•
 

Main efficiency is achieved by partitioning the 
training data into a K-D tree → multiple merges at 
each iteration.



Variations of VQ
•

 

Multistage VQ reduces storage and search time.
1.

 

First stage a low rate VQ.
2.

 

Generate error by subtracting the codeword from the 
original.

3.

 

Code the error by a different VQ.
4.

 

Repeat steps 2 and 3.

Figure 5.5.2
Multistage Vector Quantization.  
At each state an error vector is 
computed, which is then used 
as the input to the next stage of 
VQ.  The decoder merely 
computes a summation of the 
code vectors corresponding to 
the received indices.



Variations of VQ (cont.)
•

 

Parameter extraction techniques:
–

 

Mean and variance of each input vector are computed and sent 
separately.

–

 

Mean and variance might be coded with DPCM
•

 

Block classification:
–

 

Divide the blocks into several classes according to spatial 
activity.

–

 

Design a codebook for each class.
–

 

Overhead on transmitting the codebook is large.
•

 

Combine prediction techniques with VQ:
–

 

Coded quantity is the prediction error rather than intensity 
values.

•

 

VQ of color images exploits the correlation between color 
components.

•

 

Typical rates:  .1 to .5 bits per pixel for 4 x 4 pixels as vectors.



Figure 10.40
Example of an image coded by vector quantization.  Courtesy of William Equitz.
(a) Original image of 512 x 512 pixels; (b) coded image by vector quantization at 
½

 

bit/pixel.  The block size used is 4 x 4 pixels and the codebook is designed by 
using a variation of the K-means algorithm.  NMSE = 2.7% , SNR = 15.7 dB.



Second Generation Image Coding

•

 

Exploits the fact that images consist of distinct objects with well 
defined and abrupt boundaries with textured interiors.

•

 

Basic Idea:

 

Decompose a single image into edges and texture.

is an image containing basically objects with their interior 
texture removed.              is a remainder image containing texture, 
surface roughness and other irregularities of the object interiors.

•

 

Use contour coding for the shape of               .  Send coarsely 
quantized amplitudes of               separately.

•

 

Use transform coding type techniques for             .  Or, approximate 
the regions inside the boundaries with polynomials.

B (x; y) = d (x; y) + r (x; y)B (x; y) = d (x; y) + r (x; y)

d (x; y)d (x; y)
r (x; y)r (x; y)

d (x; y)d (x; y)
d (x; y)d (x; y)

r (x; y)r (x; y)



Second Generation Image Coding 
(cont.)

•

 

If the smallest allowable object is too small, then             requires 
too many bits. 

•

 

If only large objects are allowed, then             will require

 

too many 
bits.

•

 

Potential for 100:1 compression ratio.

d (x; y)d (x; y)

r (x; y)r (x; y)



Comparison of Image Coding 
Methods

Waveform 
Coding

Transform 
Coding

Image Model 
Coding

Performance 
(bits/pixel)

Worst Very good Best 
(potentially)

Computations Best Good Worst



Interframe
 

Image Coding

•

 

Similar to intraframe

 

techniques.
•

 

Extend DPCM from 2-D to 3-D:

 

Predict each pixel in frame (n + 1) 
from the neighboring ones in frame n

 

and n + 1.
•

 

Extend 2-D DCT to 3-D DCT:

 

Set high frequency temporal 
coefficients to zero → Impractical due to storage requirements and 
delay.

•

 

Hybrid Transform / Waveform Coding:
–

 

Compute a 2-D Transform for each frame.
–

 

Apply a waveform coder such as DPCM along the temporal 
direction.



Motion Estimation

•

 

Applications of motion estimation:
−

 

Commercial Problems:  Bandwidth compression of TV 
conferencing and picture phone video signals.

−

 

Industrial Problems:  Dynamic monitoring of industrial 
processes.  Dynamic robot vision.

−

 

Medical Problems:  Study of heart motion from X-ray movies.
−

 

Meteorology:  Cloud tracking.
−

 

Transportation:  Highway traffic monitoring.
•

 

Approaches to motion estimation:
–

 

Region matching methods.
–

 

Recursive methods.
–

 

Transform domain methods.
–

 

Method of differentials.



Region Matching Technique
•

 

Choose the two dimensional vector    in order to minimize the cost 
function given by:

•

 

F[.]

 

is a function measuring the similarity between two frames 
displaced with respect to each other.

•

 

is the intensity of the frame at time t and location    .
•

 

Objective:  Search over a 2-D space to find     to minimize the cost 
function at              .

•

 

Options for cost function:
–

 

Cross correlation.
–

 

Mean squared error.
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Region Matching Technique (cont.)

Figure 8.43
Image translated with displacement of (dx

 

,dy

 

)

 

(a) f(x, y, t-1

 

);  (b) f(x, y, t0

 

).



Cross Correlation Method
•

 

Define cross correlation between frame k

 

and k –

 

1:

•

 

Define NCCF

 

to be the normalized cross correlation function:

•

 

Basic Idea:  Position of the correlation peak is the displacement estimate.
•

 

Let dmax

 

denote the maximum horizontal or vertical displacement pixels.
•

 

Search for the correlation peak requires an evaluation of NCCF at       
(2dmax

 

+ 1)2

 

different horizontal and vertical shifts.  → too many operations.

R
(dx;dy)
SkSk¡1

= E [sk (x; y) sk¡1 (x¡ dx; y ¡ dy)]R
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Logarithmic Search

Figure 8.44
Illustration of three-

 
step search method.



MSE as Region Matching Criterion
•

 

Jain and Jain have proposed the MSE criterion defined by:

•

 

Too many matchings

 

→ too many operations needed to estimate 
displacement.

•

 

3 step search algorithm ⇒

 

logarithmic.
•

 

Hierarchical
•

 

Cost Comparison:  720 x 480, 30 fps
Search range ±

 

15
Full Search 30 GOPS
Logarithmic 1 GOPS
Hierarchical ½

 

GOPS
•

 

Must sacrifice accuracy if give up exhaustive search.

MSE (i; j) =
1

MN

MX
m=1

NX
n=1

[Sk (m; n)¡ Sk¡1 (m + i; n + j)]2MSE (i; j) =
1

MN

MX
m=1

NX
n=1

[Sk (m; n)¡ Sk¡1 (m + i; n + j)]2



Recursive Motion Estimation

•

 

Basic Idea:  Minimize the MSE criterion via steepest descent or 
other recursive methods.

•

 

Let                              denote the estimate of (dx

 

,dy

 

)

 

after the kth

 iteration:

•

 

ε

 

is the step size and error is the MSE.

³
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Recursive Motion Estimation (cont.)

•
 

Observations:
–

 
Evaluation of partial derivatives is noisy →

 Presmoothing
 

helps.
–

 
Can potentially achieve subpixel

 
accuracy → need to 

estimate the derivatives at subpixel
 

accuracy 
→Interpolation is needed.  

–
 

Iteration can be repeated many times over the same 
pixel or it can be used only once for a pixel and then 
move on to the next pixel.



Frequency Domain Methods for 
Motion Estimation

•

 

Basic Idea:

 

Fourier transform of the shifted version of E(x,y)

 

is 
given by:

is the Fourier Transform of E(w,y).
•

 

Solve a linear system of equations corresponding to different (wx

 

,wy

 

)

 to find dx

 

and dy

 

.
•

 

Shortcomings:  Only applies to the case where all the objects move 
in the same direction and by the same amount against a uniform 
background.

•

 

Involves phase unwrapping → computationally expensive.

E (x¡ dx; y ¡ dy) () S (wx; wy) exp [¡j2¼ (wxdx + wydy)]E (x¡ dx; y ¡ dy) () S (wx; wy) exp [¡j2¼ (wxdx + wydy)]

S (wx; wy)S (wx; wy)



Method of Differential for Motion 
Estimation

•

 

Basic Idea:  Brightness Constraint Equation:

•

 

u

 

and v

 

denote the components of motion along x

 

and y

 

directions.
•

 

Comments:
–

 

Computing derivatives is noisy particularly when there is aliasing 
due to temporal under sampling.

–

 

Brightness constraint equation only determines the component 
of motion perpendicular to the edges.

–

 

Determination of the component of motion parallel to the edges 
is an ill conditioned problem. → Not a shortcoming of the 
method.

u
@E

@x
+ v

@E

@y
+

@E
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= 0u

@E

@x
+ v

@E

@y
+

@E

@t
= 0



Method of Differential for Motion 
Estimation (cont.)

•

 

Ways to overcome ill posedness:
−

 

Assume a whole block has moved with the same velocity and 
has edges both along and perpendicular to the direction of 
motion.

−

 

Regularize the ill conditioned problem by introducing 
smoothness constraints.  Define:

Minimize:
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Color Image Coding
RGB → YIQ

Y:  most of the energy is compacted here

24 Y (n1; n2)
I (n1; n2)
Q (n1; n2)

35 =

24 0:299 0:587 0:114
0:596¡ 0:274¡ 0:322
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B (n1; n2)

3524 Y (n1; n2)
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0:211¡ 0:523 0:312

35 ²
24 R (n1; n2)

G (n1; n2)
B (n1; n2)

35

I
Q :  relatively small amount of  energy

Black and white image
Y bits/pixel

Color image
≈

 

1,5 y bits/pixel

• Requires about 50% but rate relative to Y component.
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Ĝ (n1; n2)

B̂ (n1; n2)

35 =

24 1:000 0:956 0:621
1:000¡ 0:272¡ 0:647
1:000¡ 1:106 1:703

35 ²
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Î (n1; n2)

Q̂ (n1; n2)

35



Figure 7.9
Y, I and Q components of the color image 
in Figure 7.8(d).  (a)  Y component; (b)  I 
component; (c)  Q component.



Figure 3.3.3
Two-dimensional joint probability densities of 
the three-dimensional RGB signal, for a test 
picture, showing the strong correlation 
between components.  (a) B vs. G, (b) R vs. 
B, and (c) R vs. G (from frei

 

et al. [3.3.9]).



JPEG Standard
•

 
Joint ITU ISO standard

•
 

Still image compression

Image 

Encoding

DCT Quantizer Entropy 
Coder

Header 
Table

Data

Quantization
Tables

Coding 
Tables



JPEG Standard (cont.)

Decoded
Image 

Decoder

IDCTInverse 
Quantizer

Entropy 
Decoder

Header 
Table

Data



JPEG
•

 

Compressing color images
•

 

Can compress R, G, B separately
•

 

More efficient to reduce correlation
convert RGB to YUV.

•

 

How to Design Quantization Tables?
*

 

Psychovisual

 

Experiments
*

 

Bit Rate Control
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1

2
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Entropy Coding
•

 

DC coefficients:
Difference between DC coefficients of neighboring blocks is 
quantized + coded.

•

 

AC coefficients:
•

 

Scan coefficients
•

 

Threshold to set some to 0
•

 

Run length code position
•

 

Quantize + Huffman code amplitude



JPEG MODES
1.

 
Sequential → most common

2.
 

Progressive

MSB

LSB

Spectral Selection Successive Approximation



JPEG MODES (cont.)
3.

 
Hierarchical

S1

S2

LR

HRΣ

X
↑

 

2

↓

 

2 ↑

 

2Encode

Decode

Encode Decode

Decode

L  PF

+ -
+

+

LR = Low Resolution
HR = High Resolution



MPEG Standard

•
 

ISO standard 11172 = MPEG 1.
•

 
MPEG = Moving Pictures Expert Group.

•
 

MPEG 1:
Coding of moving pictures and associated audio for 
digital storage

 
media at up to about 1.5 Mb/s.

•
 

ISO standard 13818 = ITU H.262.
“Generic coding of moving Pictures and associated 
audio”

 
= MPEG 2.

•
 

Motivation for MPEG 2:  Higher bit rate, greater input 
flexibility.

•
 

MPEG 4 → very low bit Rate 1998.



MPEG
•

 
Only specifies the syntax of the coded bit stream

•
 

Lots of room for flexibility and optimization.
•

 
MPEG standards are application independent, BUT
–

 
MPEG 1 → CDROM

–
 

MPEG 2 → Digital TV
•

 
Many parts to standard
–

 
Systems

–
 

Audio
–

 
Video ←

–
 

Conformance testing



MPEG 1

•
 

Does not recognize fields and frames.
•

 
Only non-interlaced data

•
 

Basic Concepts
–

 
Inter frame and Intra frame coding

–
 

DCT
–

 
Block based motion compensation

–
 

Huffman coding for motion vectors and quantized 
DCT coefficients

–
 

Inter frame coding:
Predictive AND

 
Interpolative



Picture Types:
•

 
Three types

•
 

I pictures:  Intra
•

 
P pictures:  Predicted from past I or P frames

•
 

B pictures:  Bidirection
 

predicted either from past or 
future I or P frames

•
 

Example



Picture Types (cont.)



Bidirectional Motion Compensation



Block Diagram of MPEG Encodes

•
 

Assumes 4:2:0 color subsampling
 

N x N luminance
N/2 x N/2 each of chrominance



MPEG 2:
•

 

Quite similar to MPEG 1
•

 

Differences from MPEG 1:
–

 

Interlaced pictures → affects motion compensation
–

 

Color subsampling
4 : 2 : 2 and 4 : 4 : 4 as well as 4 : 2 : 0

Y Cr Cb

4 : 2 : 0 N x N

4 : 2: 2 N x N

4 : 4 : 4 N x N N x N N x N

N

2
£ N

2

N

2
£ N

2

N

2
£ N

2

N

2
£ N

2

N

2
£N

N

2
£N

N

2
£N

N

2
£N

•

 

Profiles  + levels



Profiles + Levels
•

 
Profiles:
–

 
Simple

 
4 : 2 : 0

–
 

Main
 

4 : 2 : 0
–

 
Main +

 
4 : 2 : 0

–
 

Next
 

4 : 2 : 2
•

 
Most applications → Main

•
 

Next includes hierarchical representation  → terrestrial 
broadcasting

•
 

Main + between main and Next
•

 
Simple, same as main but no bidirectional prediction →

 low cost
•

 
Levels:  specifies max spatio-temporal resolution + bit 
Rate.

Nonscalable

Scalable





Scalability
•

 
Allows layered representation of Coded bit stream.

•
 

4 modes
–

 
Data Partitioning:  2 channels, header + data

–
 

SNR Scalability:  Applications with video quality at 
multiple quality levels

–
 

Spatial scalability
–

 
Temporal scalability



H. 261 Video Coding
•

 
Collaboration between Telecom operators and 
manufacturers of video conferencing equipment

•
 

H. 261 or p x 64 kbps
P = 1 → 30

•
 

H. 320 is complete family
–

 
H. 261 video

–
 

G. 722, G. 726, G. 728
–

 
H. 221 → Multiplexing

–
 

H. 230, H. 242 → Handshaking
–

 
H. 233 → Encryption



H. 261
•

 

Format CIF  OR  QCIF
•

 

CIF = Common Intermediate Format
Y:

 

352 x 288
Cb

 

:

 

176 x 144
Cr

 

:

 

176 x 144
•

 

QCIF ½ x ½ CIF
•

 

Similar to MPEG  
–

 

Motion Comp
–

 

DCT
–

 

VLC
•

 

No bidirectional
•

 

BCM codes for error detection
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