
Objectives of Image Coding

•

Representation of an image with acceptable quality,
using as small a number of bits as possible

Applications:
•

Reduction of channel bandwidth for image transmission

•

Reduction of required storage

Image
Coder

Channel
decoder

Transmitter

Image
Source

Channel
encoder

Channel

Image
decoder

Receiver

Reconstructed
Image

Figure 10.1 Typical environment for image coding.

Objectives of Image Coding cont.

Issues in Image Coding
1.

What to code?
a.

Image density
b.

Image transform coefficients
c.

Image model parameters

2.

How to assign reconstruction levels
a.

Uniform spacing between reconstruction levels
b.

Non-uniform spacing between reconstruction levels

3.

Bit assignment
a.

Equal-length bit assignment to each reconstruction level
b.

Unequal-length bit assignment to each reconstruction level

Image
source Transformation Quantization Codeword

assignment
String
of bits

Figure 10.2 Three major components in image coding.

Issues in Image Coding cont.

Methods of Reconstruction Level
Assignments

Assumptions:
•

Image intensity is to be coded
•

Equal-length bit assignment

Scalar Case
1.

Equal spacing of reconstruction levels (Uniform Quantization)
(Ex): Image intensity f: 0 ~ 255

f ! ! f̂f ! ! f̂Uniform
Quantizer

Methods of Reconstruction Level
Assignments cont.

Number of reconstruction levels: 4 (2 bits for equal bit assignment)

0 32 64 96 128 160 192 224 255

Methods of Reconstruction Level
Assignments cont.

Figure 10.3
Example of uniform quantizer. The number of reconstruction levels is 4, is assumed to be
between 0 and 1, and is the result of quantizing . The reconstruction levels and decision
boundaries are denoted by ri and

di , respectively.

Scalar Case (cont.)
2. Spacing based on some error criterion

ri

: reconstruction levels (32, 96, 160, 224)

di

: decision boundaries (0, 64, 128, 192, 256)

Optimally choose ri

and di

.

To do this, assume

J

the number of reconstruction levels

: probability density function for f

Minimize

ri

, di

, : =

==> Lloyd-Max Quantizer

These are not simple linear equations.

Scalar Case (cont.)
2.

Spacing based on some error criterion

ri

: reconstruction levels (32, 96, 160, 224)

di

: decision boundaries (0, 64, 128, 192, 256)

Optimally choose ri

and di

.

To do this, assume

J

the number of reconstruction levels

: probability density function for f

Scalar Case (cont.)
Minimize

ri

, di

, :

==> Lloyd-Max Quantizer

These are not simple linear equations.

Scalar Case (cont.)
 Solution to Optimization Problem

Figure 10.5
Example of a Lloyd-Max quantizer. The number of reconstruction levels is 4, and
the probability density function for is Gaussian with mean of

0 and variance of 1.

Figure 10.6
Comparison of average distortion

as a function of L, the number of reconstruction
levels, for a uniform quantizer

(dotted line) and the Lloyd-Max quantizer

(solid line). The vertical
axis is 10 log10

D. The probability density function is assumed to be Gaussian with variance of 1.

Scalar Case (cont.)
For some densities, the optimal solution can be viewed as follows:

P(g)

is flat density equally likely between gmax

, gmin

Uniform
quantizer

Figure 10.7 Nonuniform

quantization by companding.

Nonlinearity Nonlinearity-1

Scalar Case (cont.)

Figure 10.7 Nonuniform

quantization by companding.

Uniform
quantizerNonlinearity Nonlinearity-1

For some densities, the optimal solution can be viewed as follows:

P(g)

is flat density equally likely between gmax

, gmin

Table ?

1-2 Companding

quantization by transformation

Probability Density Forward Transformation Inverse Transformation

Gaussian

Rayleigh

Lapiacian

Where

Vector Case
f1

, f2

: two image intensities
One approach: Separate level assignment for f1

, f2
•

previous discussions apply
Another approach: Joint level assignment for (f1

, f2

)
•

typically more efficient than separate level assignment

f2

f1

Minimize reconstruction levels/decision boundaries:

•

efficiency depends on the amount of correlation between f1

and f2

•

finding joint density is difficult
(Ex): Extreme case –

vector level assignment for 256 x 256
Joint density P(x1

, x2

, …, x256)

is difficult to get
Law of diminishing returns comes into play

Vector Case (cont.)

Codeword Design: Bit Allocation
•

After quantization, need to assign binray

codeword to each
quantization symbol.

•

Options:
–

Uniform: equal number of bits to each symbol → inefficient
–

Non-uniform: short codewords

to more probable symbols, and
longer codewords

for less probable ones.
•

For non-uniform, code has to be uniquely decodable:
–

Example: L = 4, r1

→

0, r2

→ 1, r3 → 10, r4

→ 11
–

Suppose we receive 100.
–

Can decode it two ways: either r3

r1

or r2

r1

r1

.
–

Not uniquely decodable.
–

One codeword is a prefix

of another one.
•

Use Prefix codes instead to achieve unique decodability.

Overview
•

Goal: Design variable length codewords

so that the average bit rate is
minimized.

•

Define entropy to be:
pi

is the probability that the ith

symbol is

ai

.
•

Since we have
•

Entropy: average amount of information a message contains.
•

Example: L = 2, p1

= 1, p2

= 0 →

H = 0. A symbol contains NO
information.

•

p1 = p2 = ½

→

H = 1

Maximum possible value.

1

1/2 10

H

p

Overview

•

Information theory: H

is the theoretically minimum possible
average bite rate.

•

In practice, hard to achieve
•

Example: L

symbols, uniform length
coding can achieve this.

•

Huffman coding tells you how to do non-uniform bit allocation to
different codewords

so that you get unique decodability

and get
pretty close to entropy.

Methods of Bit Assignment (cont.)

Example:

Huffman Coding:

A practical method to achieve near-optimum performance.

Figure10.16
Illustration of codeword generation in Huffman cding. Message possiblities

with higher probabilities are assigned with shorter codewords.

Methods of Bit Assignment (cont.)

•

Uniform-length codeword: 3 bits/message

•

Huffman coding:

•

Entropy:

Methods of Bit Assignment (cont.)

Vector Case

Comments:
1.

Finding pi for a large number of elements in the vector is difficult.
2.

Law of diminishing returns comes to play.
3.

Huffman Coding can be used.

f1

, f2 Prob.

Arithmetic Coding

•

Why not use Huffman?
•

Can show rate of Huffman code is within

Pmax

+ 0.86 of

 Entropy.
Pmax

= Prob. of most frequent symbol
•

Example:
iid source = {a1

, a2

, a3 }
P(a1) = 0.95

P(a2) = 0.02

P(a3) = 0.03
Entropy = 0.335 bits/symbol
Huffman : 1.05 bits/symbol

Huffman 213% of Entropy!!

Mechanics fo

Arithmetic Coding

•

Two Steps:

1.

Generate a tag
2.

Assign a binary code to the tag

•

Tag Generation:

A sequence of symbols from an alphabet source
with a given Pdf

results in a unique sub-interval in

[0, 1].

Example of Tag Generation:
•

A = {a1

, a2

, a3

} P(a1

) = 0.7
P(a2

) = 0.1

P(a3

) = 0.2
•

Suppose we encode a1

, a2

, a3

•

Interval [0.546, 0.56] uniquely specifies sequence (a1

, a2

, a3

)

0 0

0.7
0.8

1.0

0.49
0.56

0.70 0.56 0.56

0.539
0.546

0.5558
0.5572

0.49 0.546

a1 a2 a3

Deciphering the Tag:
•

Suppose we know 3 symbols resulted in subinterval
[0.546, 0.56]

•

Decode the symbols?
•

Is the first symbol a1

or a2

or a3

?
a1

[0, 0.7]
a2

[0.7, 0.8]
a3

[0.8, 1]
•

Is the second symbol a1

, a2

, or a3

?
a1

[0, 0.49]
a2

[0.49, 0.56]
a3

[0.56, 0.7]

0

0.49
0.56

0.7

0.49

0.56

0.539
0.546

a1

a2

Generating a binary code:
•

Uniqueness:

•

Consider sequence of symbols

•

Compute
If iid

source ⇒

easy to compute

•

Write down binary representation of the point in the
middle of subinterval for .

•

Truncate it to

•

Can show it is unique.

Example Generating a binary code:
•

Consider subinterval [0.546, 0.56]

•

Midpoint: 0.553

•

•

of bits =

•

Binary Representation of 0.553

•

Truncate to 8 bits ⇒

Binary Representation:

10001101

Efficiency of Arithmetic Code

•

We can show
°

m # of symbols in sequence

°

lA

=

average length per symbol
°

H(X)

= entropy of source

°

Assumes iid

source.

•

Observe: By increasing length of sequence, can get
arbitrarily close to entropy.

Dictionary Techniques
•

Huffman and arithmetic coding assumed i.i.d.
sources

•

Most sources are correlated

•

Main idea:

1.

Build a list of commonly occurring patterns

2.

Transmit index in the list.

•

Exploits fact that certain patterns recur frequently.

•

Consider 2 cases:

1.

Static Dictionary

2.

Dynamic Dictionary

Static Dictionary:
•

Suppose five letter alphabet source:
A = {a, b, c, d, r}

•

Using statistics of source, build dictionary

Entry
Code

•

Encode a b r a c a d a b r a
1.

Read ab

101
2.

Read ra

not in dictionary
3.

Read r

100
4.

Read ac

110
5.

……..
101

100

110

111

101

100

000
ab

r

ac

ad

ab

r

a
•

Opposite of Huffman coding:

ad ac ab r d c b a

111 110 101 100 011 010 001 000

Adaptive Dictionary:
•

Ziv

Lempel 1977 + 1978
•

LZ1 →

1977

LZ2 →

1978
•

LZ1 discussed Here.
•

Basic idea:
Dictionary portion of previously encoded sequence

•

Sliding window:
1.

Search buffer
2.

Lookahead

buffer
Match pointer

c x p a

Search buffer

Look ahead buffer

x a b p a x a d a b a p p a p

Example
. . . c a b r a c a d a b r a r r a r r a d . . .
–

Window = 13

–

Look ahead buffer = 6
–

Search buffer = 7

. . . . r a . . .

1.

No match to d

→

< 0, 0, C(d) >

. . . . c

a r . . .

c a b r a c a d a b r a r

a b r a c a d a b r a r r

Example (cont.)

o = 2

l = 1
2.

Match for a: 0 = 4

l

= 1

0 = 7

l

= 4

< 7, 4, C (r) >

a d a b r a r r a r r a d

Example (cont.)

3.

Match for r:

0 = 1

l

= 1
0 = 3

l

= 5

< 3, 5, C (d) >

Exceeds the boundary between
search and look ahead buffer

Encoding steps:
1.

Move search pointer back until match in search buffer.

2.

Offset distance of pointer from look ahead buffer.

3.

Do consecutive symbols of pointer match also?

4.

Search the search buffer for the longest match.

5.

Length of match # of consecutive symbol match.

6.

Send <o, l, c)
o = offset

l

= match length

C = codeword of symbol in LA buffer, following match.

Example: <7, 2, codeword for a >

Adaptive Dictionary

•

Why send C?

–

Just in case no match

•

Total # of bits:

S = size of search buffer

W = Size of window (search + LA)

A = size of source alphabet

What to Code
(Classification of Image Coding Systems)

1.

Waveform Coder (code the intensity)
•

PCM (Pulse Code Modulation) and its
improvements

•

DM (Delta Modulation)

•

DPCM (Differential Pulse Code Modulation)

•

Two-channel Coder

What to Code
(Classification of Image Coding Systems)

(cont.)

2.

Transform Coder (code transform coefficients of
an image)

•

Karhunen-Loeve

Transform

•

Discrete Fourier Transform

•

Discrete Cosine Transform

3.

Image Model Coder
•

Auto-regressive Model for texture

•

Modelling

of a restricted class of images

NOTE:

Each of the above can be made to be adaptive

Waveform Coder

Uniform
Quantizer

•

PCM Coding

Non-Linearity Non-Linearity-1Uniform
Quantizer

•

Very simple
•

Typically requires over 5-6 bits/pixel for good quality

•

False contours for low-bit rate case

Improvements of PCM

Transmitter Receiver

1.

Roberts’

Pseudo-Noise Technique:

Uniform
Quantizer+ +

+

+ +
_

P (w) =

(
1
¢

¡ ¢
2
· w 0 · ¢

2

0 o th e rw is e
P (w) =

(
1
¢

¡ ¢
2
· w 0 · ¢

2

0 o th e rw is e

Improvements of PCM (cont.)

Pixel Spacing

(a) Nominal Quantization

i-1

i+1

i

Original Image signal

Reconstructed Image Signal

Decision Level

Resonstruction

Level

• False contours disappear –

replaced
by additive random noise

(b) One bit Pseudonoise

Improvements of PCM (cont.)

i-1

i+1

i

i-2

i+2

(c) Original Image Signal Plus Noise

i-1

i+1

i

i+2

i-2

(d) Quantized Image Signal Plus Noise

Improvements of PCM (cont.)

(e) Pseudonoise

Quantization

i-1

i+1

i

i-2

i+2 Original Image signal

Reconstructed Image Signal

Improvements of PCM (cont.)

2.

Roberts’

Pseudo-Noise Technique with Noise Reduction:

Transmitter Receiver

Uniform
Quantizer+ +

+

+ +
_

Noise
Reduction

Figure 10.21
Example of quantization
Noise reduction in PCM speech coding.
(a)

Segment of noise-free voiced speech;
(b)

PCM-coded speech at 2 bits / sample;
(c)

PCM-coded speech at 2 bits / sample
by Roberts’

pseudonoise

technique;
(d) PCM-coded speech at 2 bits / sample with

Quantization noise reduction.

Figure 10.22
Example of quantization noise reduction in PCM image coding. (a) Original
image of 512 x 512 pixels; (b) PCM-coded image at 2 bits/pixel.

(a) (b)

Figure 10.22
Example of quantization noise reduction in PCM image coding. (c)

PCM-

coded image at 2 bits/pixel by Roberts’s pseudonoise

technique; (d) PCM-

coded image at 2 bits/pixel with quantization noise reduction.

(c) (d)

Delta Modulation (DM)

Transmitter

Transmitter

1 bit
quantization+_

+

+

Delta Modulation (DM) (cont.)

Receiver
Receiver

+

Delta Modulation (DM) (cont.)

• Needs over 2-3 bits/pixel to get good quality

Figure 10.26
Granular noise and slope-overload distortion in delta modulation.

Figure 10.27
Example of delta-modulation (DM)-coded image. The original image used is
the image in Figure 10.22(a). (a) DM-coded image with = 8% of the
overall dynamic range. NMSE = 14.8%, SNR = 8.3 dB; (b) DM-coded image
with = 15%, NMSE = 9.7%, SNR = 10.1 dB.

(a) (b)

Figure 10.28
DM-coded image at 2 bits/pixel. The original image
used is the image in Figure 10.22(a). NMSE = 2.4%,
SNR = 16.2 dB.

Differential Pulse Code Modulation (DPCM)

Transmitter
PCM+_

+

+
+

+

Prediction

Previously coded pixel intensities

The Auto-regressive Model parameters are obtained from the image by solving a linear set
of equations or by a Markov process assumption

Differential Pulse Code Modulation
(DPCM) (cont.)

Receiver

+

Prediction

• Requires 2-3 bits/pixel for good quality image

Figure 10.30
Example of differential pulse code modulation (DPCM)-coded
image at 3 bits/pixel. Original image used is the image in Figure
10.22(a). NMSE = 2.2%, SNR = 16.6 db.

Transform Image Coding
Transmitter

Transform Quantization Codeword
Assignment

Inverse
Transform Decoder

Receiver

What is exploited: Most of the image energy is concentrated in a small number
of coefficients for some transforms

• the more energy compaction, the better

Transform Image Coding

Some considerations:
•

Energy compaction in a small number of coefficients
•

Computational aspect: important (subimage

by
subimage

coding –

8 x 8 –

16 x 16)
•

Transform should be invertible
•

Correlation reduction

Examples of Transforms
1.

Karhunen-Loeve

Transform

Covariance

Examples of Transforms (cont.)

Comments:

• Optimal in the sense that the coefficients are completely uncorrelated

• Finding is hard

• No simple computational algorithm

• Seldom used in practice

• On average, first M coefficients have more energy than any

other
transform

• KL is best among all linear transforms from: (a) compaction
(b) decorrelation

Need better scan of Figure 5.3.7

Figure 5.3.7
Images used for coding and statistics. (a) “Karen”

has
much more stationary Statistics than (b) “Stripes.”

Figure 5.3.7
Images used for coding and statistics. (a) “Karen”

has much
more stationary Statistics than (b) “Stripes.”

Figure 5.3.22
Truncation PSNR versus block size for separable transforms with the image “Karen”

when 60
percent of the coefficients are kept (p=0.6).

Basic Compression Techniques

Figure 5.3.21
Comparison of truncation errors using separable, two-dimensional
blocks with the image “Karen”. The coefficients having the largest MSV
are transmitted. (a) 4 x 4 blocks, N = 16. (b) 16 x 16 blocks, N = 256.

(a)

Figure 5.3.21
Comparison of truncation errors using separable, two-dimensional
blocks with the image “Karen”. The coefficients having the largest MSV
are transmitted. (a) 4 x 4 blocks, N = 16. (b) 16 x 16 blocks, N = 256.

(b)

Discrete Cosine Transform

DFT

Comments:
• Good energy compaction (better than DFT)

Sharp discontinuity No sharp discontinuity

Discrete Cosine Transform (cont.)
Comments (cont.):

• Fast algorithms
• All real coefficients
• Most often used in practice (good quality image at bit rate less than 1 bit/pixel)
• Other transforms: Hadamard, Haar, Slant, Sine, …

The sequence Y(k)

is related to y(n)

through the 2N-point inverse DFT relation
given by

From (3.20), x(n)

can be recovered from y(n)

by

(3.28)

x(n) =

(
y(n); 0 · n · N ¡ 1

0, otherwise
(3.29)

Discrete Cosine Transform (cont.)
From (3.27), (3.28), and (3.29), and after some algebra,

Equation (3.30) can also be expressed as

where

Equation (3.31) is the inverse DCT relation. From (3.25) and (3.31),

x(n) =

(
1
N

h
Cx(0)

2 +
PN¡1

k=1 Cx(k)cos ¼
2N k(2n + 1)

i
; 0 · n · N ¡ 1

0, otherwise

(3.30)

x(n) =

(
1
N

PN¡1
k=0 w(k)Cx(k)cos ¼

2N k(2n + 1); 0 · k · N ¡ 1

0, otherwise

(3.31a)

w(k) =

(
1
2 ; k = 0

1, 1 · k ·N ¡ 1,

(3.31b)

Discrete Cosine Transform (cont.)

From the derivation of the DCT pair, the DCT and inverse DCT can

be
computed by

Computation of Discrete Cosine Transform

Step 1. y(n) = x(n) + x(2N ¡ 1¡ n)

Cx(k) =

(PN¡1
n=0 2x(n)cos ¼

2N k(2n + 1); 0 · k · N ¡ 1

0, otherwise
Cx(k) =

(PN¡1
n=0 2x(n)cos ¼

2N k(2n + 1); 0 · k · N ¡ 1

0, otherwise
(3.32a)

x(n) =

(
1
N

PN¡1
k=0 w(k)Cx(k)cos ¼

2N k(2n + 1); 0 · n · N ¡ 1

0, otherwise
(3.32b)

Discrete Cosine Transform Pair

Discrete Cosine Transform (cont.)

Step 2. Y (k) = DFT [y(n)](2N ¡ point DFT computation)

Step 3. Cx(k) =

(
W

k=2
2N Y (k); 0 · k · N ¡ 1

0; otherwise

Computation of Inverse Discrete Cosine Transform

Step 2. y(n) = IDFT [Y (k)](2N ¡ point inverse DFT computation)

Step 1. Y (k) =

8><>:
W

¡k=2
2N Cx(k); 0 · k · N ¡ 1

0; k = N

¡W
¡k=2
2N Cx(2N ¡ k); N + 1 · k · 2N ¡ 1

Discrete Cosine Transform (cont.)
Computation of Inverse Discrete Cosine Transform (cont.)

Step 3. x(n) =

(
y(n); 0 · n · N ¡ 1

0; otherwise

In computing the DCT and inverse DCT, Steps 1 and 3 are computationally
quite simple. Most of the computations are in Step 2, where a 2N-point

DFT is computed for the DCT and a 2N-point

inverse DFT is computed for
the inverse DCT. The DFT and inverse DFT can be computed by using
fast Fourier transform (FFT) algorithms. In addition, because has
symmetry, the 2N-point

DFT and inverse DFT can be computed (see
Problem 3.20)

by computing the N-point

DFT and the N-point

inverse DFT
of an N-point

sequence. Therefore, the computation involved in using the
DCT is essentially the same as that involved in using DFT.

y(n)

Discrete Cosine Transform (cont.)
Computation of Inverse Discrete Cosine Transform (cont.)

In the derivation of the DCT pair, we have used an intermediate sequence
that has symmetry and whose length is even. The DCT we derived is thus
called an even symmetrical DCT. It is also possible to derive the odd
symmetrical DCT pair in the same manner. In the odd symmetrical

DCT, the
intermediate sequence used has symmetry, but its length is odd. For
the sequence shown in Figure 3.9(a), the sequence used is
shown in Figure 3.9(b).

The length of is, and , obtained
by repeating every points, has no artificial discontinuities.
The detailed derivation of the odd symmetrical DCT is considered

in Problem
3.22.

The even symmetrical DCT is more commonly used, since the odd
symmetrical DCT involves computing an odd-length DFT, which is not very
convenient when one is using FFT algorithms.

~y (n)

y(n)
y(n)

y (n)

x(n)
y(n)y(n) 2N¡1

2N ¡ 1y(n)y(n)

Discrete Cosine Transform (cont.)
Computation of Inverse Discrete Cosine Transform (cont.)

0 1 2 3 4 5 6
n

0 1 2 3
n

x(n)

y(n) = x(n) + x(2N ¡ 2¡ n)¡ x(N ¡ 1)±(n¡ (N ¡ 1))

(a) (b)
Figure 3.9
Example of (a) and (b) .
The sequence is used in the intermediate step in defining the odd
symmetrical discrete cosine transform of .

x(n) y(n) =x(n)+x(2N¡2¡n)¡x(N¡1)±(n¡(N¡1))
y(n)

x(n)

DCT
•

Signal independent

•

ρ

1 : KLT DCT
For first order Markov Image model

•

Type II DCT:
S(K1; K2) =

r
4

N2
C(K1)C(K2)

N¡1X
n1=0

N¡1X
n2=0

s(n1; n2)cos

μ
¼2(n1 + 1)K1

2N

¶

cos

μ
¼2(n2 + 1)K2

2N

¶

C(K) =

(
1p
2

K=o

1 otherwise

DCT (cont.)

Figure 12.4

The basis matrices for the DCT

DCT (cont.)

The outer products of the rows are shown in Figure 12.4. Notice

that the
basis matrices show increased variation as we go from the top left of the
matrix, corresponding to the θ00

coefficient, to the bottom right matrix,
corresponding to the θ(N-1)(N-1)

coefficient.

The DCT is closely related to the discrete Fourier transform (DFT) mentioned
in Chapter 11, and in fact can be obtained from the DFT . However, in terms
of compression, the DCT performs better than the DFT.

Recall that when we find the Fourier coefficients for a sequnece

of length N,
we assume that the sequence is periodic with period N. If the original
sequence is as shown in Figure 12.5a, the DFT assumes that the sequence
outside the interval of interest behaves in the manner shown in Figure 12.5b.

DCT (cont.)

This introduces sharp discontinuities, at the beginning and end of the
sequence. In order to represent these sharp discontinuities the

DFT
needs nonzero coefficients for the high-frequency components. As
these components are needed only at the two endpoints of the
sequence, their effect needs to be cancelled out at other points

in the
sequence. Thus, the DFT adjusts other coefficients accordingly.

When
we discard the high-frequency coefficients (which should not have been
there anyway) during the compression process, the coefficients

that
were cancelling out the high-frequency effect in other parts of the
sequence result in the introduction of additional distortion.

Discarding Transform Coefficients
Threshold coding: Coefficients with values above a given threshold are coded.

•

Location as well as amplitude has to be coded
•

Run-length coding is useful (Many zeros)

Figure 10.44
Example of a bit allocation map at 1 bit/pixel for zonal discrete cosine
transform image coding. Block size = 16 x 16 pixels.

Discarding Transform Coefficients
Zonal coding: Eliminate coefficients in a fixed zone.

of Bits for coefficient i with variance 62
i62
i

bi =
B

M
+

1

2
log26i

2 ¡ 1

2M

MX
i=1

log26
2
ibi =

B

M
+

1

2
log26i

2 ¡ 1

2M

MX
i=1

log26
2
i

M = # of coefficients to be coded
B = total # of bits

Scalar Quantization of a Vector Source
•

Assume N scalars:
•

Each fi is quantized to Li reconstruction levels.
•

Total of B bits to code N scalars.
•

Optimum bit allocation strategy depends on (a) error criterion and (b) pdf

of
each random variable.

•

Assume we minimize MSE: with respect to Bi the

number of bits for the ith scalar for
•

Assume pdf

of all fi is the same except they have different variances.
•

Use Lloyd Max quantizer.
•

Under these conditions we have:

•

is the variance of fi :

• Li is the number of reconstruction levels for source i.

fi 1 · i · Nfi 1 · i · N

NX
i=1

E
h
(f 0i ¡ fi)

2
iNX

i=1

E
h
(f 0i ¡ fi)

2
i

1 · i · N1 · i · N

Bi =
B

N
+

1

2
log

¾2
i£

¦N
j=1¾

2
j

¤1=N
Bi =

B

N
+

1

2
log

¾2
i£

¦N
j=1¾

2
j

¤1=N

¾2
i¾2
i Li =

¾i£
¦N

j=1¾i

¤1=N
2B=NLi =

¾i£
¦N

j=1¾i

¤1=N
2B=N

DCT-Coded Images

Figure 10.47
DCT-coded image with visible
blocking effect.

DCT-Coded Images (cont.)

Figure 10.48
Example of DCT image coding. (a) DCT-coded image at 1 bit/pixel, NMSE = 0.8%,
SNR = 20.7 dB. (b) DCT-coded image at

½

bit/pixel. NMSE = 0.9%, SNR = 20.2
dB.

(a) (b)

Quantization of DCT Coefficients

Figure 10.46
Illustration of graininess increase due to quantization of DCT coefficients. A
2-bit/pixel uniform quantizer

was used to quantize each DCT coefficient
retained to reconstruct the image in Figure 10.45(b)

Blocking Effect Reduction

Figure 10.50
Example of blocking effect reduction using a filtering method. (a) Image
of 512 x 512 pixels with visible blocking effect. The image is coded by a
zonal DCT coder at 0.2 bit/pixel. (b) Image in (a) filtered to reduce the
blocking effect. The filter used is a 3 x 3-point h(n1

, n2

) with h(0, 0)=1/5
and h(n1

, n2

) = 1/10 at the remaining eight points.

(a) (b)

Adaptive Coding and Vector
Quantization

Transform coding techniques can be made adaptive to the local characteristics
within each subimage. In zonal coding, for example, the shape and size of the
zone can be adapted.

1-D waveform reconstruction
along each column

1-D transform
along each row

Transmitter

1-D waveform coding
along each column

Codeword
assignment

1-D inverse transform
along each row Decoder

Receiver

f(n1; n2)f(n1; n2)

f(n1; n2)f(n1; n2)

Tf (k1; n2)Tf (k1; n2)

T̂f (k1; n2)T̂f (k1; n2)

T̂
0
f (k1; n2)T̂
0
f (k1; n2)

T̂
0
f (k1; n2)T̂
0
f (k1; n2)

Figure 10.51 Hybrid transform/waveform coder.

Iterative Procedures for Reduction
of Blocking Effects in Transform

Image Coding
 by

 Ruth Rosenholtz

and Avideh

Zakhor

Hybrid Coding
•

Combines waveform and transform coding.
–

Implementation is simpler than 2-D transform coding.

–

Better performance than waveform coding.

•

Basic Idea:
–

Transform an image f(n1

, n2

)

by a 1-D transform such
as a 1-D DCt

along each row to obtain Tf

(k1

, n2

).
–

Remove more redundancy along each column by
DPCM.

Hybrid Coding (cont.)

•

Hybrid coding useful in interframe

coding.

1-D waveform reconstruction
along each column

1-D transform
along each row

Transmitter

1-D waveform coding
along each column

Codeword
assignment

1-D inverse transform
along each row Decoder

Receiver

f(n1; n2)f(n1; n2)

f̂(n1; n2)f̂(n1; n2)

Tf (k1; n2)Tf (k1; n2)

T̂f (k1; n2)T̂f (k1; n2)

T̂
0
f (k1; n2)T̂
0
f (k1; n2)

T̂
0
f (k1; n2)T̂
0
f (k1; n2)

Figure 10.51 Hybrid transform/waveform coder.

Hybrid Coding (cont.)

Waveform reconstruction
along n3

at each (k1 , k2)

2-D transform
for each n3

Transmitter
Waveform coding

along n3
at each (k1 , k2)

Codeword
assignment

2-D inverse transform
for each n3

Decoder

Receiver

f(n1; n2; n3)f(n1; n2; n3)

f̂(n1; n2; n3)f̂(n1; n2; n3)

Tf (k1; k2; n3)Tf (k1; k2; n3)

T̂f (k1; k2; n3)T̂f (k1; k2; n3)

T̂
0
f (k1; k2; n3)T̂
0
f (k1; k2; n3)

T̂
0
f (k1; k2; n3)T̂
0
f (k1; k2; n3)

Figure 10.51 Interframe

hybrid coder.

Two-Channel Image Coder

fLS(n1;n2)fLS(n1;n2)

Transmitter
Transmit

Transmit

LPF PCM PCMSubsample Interpolate +

f(n1;n2)f(n1;n2) fL(n1;n2)fL(n1;n2) f̂LS(n1;n2)f̂LS(n1;n2) fH(n1;n2)fH(n1;n2) f̂H(n1;n2)f̂H(n1;n2)

-
+

f̂L(n1;n2)f̂L(n1;n2)

Receiver
Interpolation

+

f̂LS(n1; n2)f̂LS(n1; n2)
f̂L(n1; n2)f̂L(n1; n2)

f̂(n1; n2)f̂(n1; n2)f̂H (n1; n2)f̂H (n1; n2)

+

-

fL

(n1

, n2

): Can be under-sampled (typically by 8 x 8), but requires above 5 bits/sample.

f H

(n1

, n2

): Cannot be under-sampled, but can be coarsely quantized (2-3 bits/pixel).

Bit rate ≈
5

64
+ 2¡ 3 bits/pixel ¼ 2¡ 3 bits/pixel

5

64
+ 2¡ 3 bits/pixel ¼ 2¡ 3 bits/pixel

Coarser amount of ??
Some noise is less visible
in high contrast region.

Two-Channel Image Coding (cont.)

Figure 10.32
Example of image coding by at two-channel coder. (a) Original image
of 512 x 512 pixels; (b) coded image at 3 1/8 bits/pixel. NMSE = 1.0%,
SNR = 19.8 dB.

•

Basic Idea:

Successive lowpass

filtering and subsampling.

•

Filtering:

•

Subsampling:

Pyramid Coding and Subband

Coding

SubsampleLowpass

filtering

fi(n1; n2)fi(n1; n2) fL
i (n1; n2)fL
i (n1; n2) f1+1(n1; n2)f1+1(n1; n2)

Figure 10.33
Process of generating the i + 1th-level image from
the ith-level image in Gaussian pyramid image
representation.

fi+1(n1; n2)fi+1(n1; n2)

fi(n1; n2)fi(n1; n2)

fi+1(n1; n2) =

(
fL
i (2n1;2n2) 0· n1; n2 · 2M¡1

0; Otherwise
fi+1(n1; n2) =

(
fL
i (2n1;2n2) 0· n1; n2 · 2M¡1

0; Otherwise

fL
i (n1; n2) = fi(n1; n2) ¤ h(n1; n2)fL
i (n1; n2) = fi(n1; n2) ¤ h(n1; n2)

Pyramid Coding and Subband

Coding (cont.)

•

Type of filter determines the kind of pyramid.
•

Gaussian pyramid: h(n1 , n2) = h(n1)h(n2).

a is between .3 and .6

h(n) =

8><>:
a n = 0
1
4

n = §1
1
4
¡ a

2
n = §2

h(n) =

8><>:
a n = 0
1
4

n = §1
1
4
¡ a

2
n = §2

Pyramid Coding and Subband

Coding (cont.)
•

Application to image coding:
–

Code successive images down the pyramid from the ones above it.
–

Use intrafram

coding techniques to code the image at top of the pyramid.
–

Interpolate to obtain a prediction for .

–

Code the prediction error: to construct

–

Repeat until the bottom level image, i.e. the original is reconstructed.

•

The sequence is a Gaussian Pyramid.
•

The sequence is a Laplacian

Pyramid.
•

Other examples of Pyramid coding:
–

Subband

coding.
–

Wavelet coding.

fi=1(n1; n2)fi=1(n1; n2) fi(n1; n2)fi(n1; n2)

f̂i(n1; n2) = I[fi=1(n1; n2)]f̂i(n1; n2) = I[fi=1(n1; n2)]

ei(n1; n2) = fi(n1; n2)¡ f̂i(n1; n2)ei(n1; n2) = fi(n1; n2)¡ f̂i(n1; n2)

fi(n1; n2)fi(n1; n2)

fi(n1; n2)fi(n1; n2)

ei(n1; n2)ei(n1; n2)

Gaussian Pyramid Representation

Figure 10.36
Example of the Gaussian pyramid representation for image of 513 x 513 pixels
with K = 4.

Laplacian

Pyramid

Representation

Figure 10.38
Example of the Laplacian

pyramid image representation with K = 4. The
original image used is the 513 x 513-pixel image f0

(n1

, n2

)

in Figure 10.36
e1

(n1

, n2

)

for 0 ≤

i ≤

3

and f4

(n1

, n2

).

Laplacian

Pyramid Image Coding

Figure 10.39
Example of the Laplacian

pyramid image coding with K = 4

at ½

bit/pixel.
The original image used is the 513 x 513-pixel image f0

(n1

, n2

)

in Figure
10.36.

Subband

Coding

X(n) X̂̂X

H1

H0 ↓

2

↓

2

↑

2

↑

2 G1

G0

∑

….

….

X̂(!) =
1

2
[H0 (!) G0 (!) + H1 (!) G1 (!)] X (!) +X̂(!) =

1

2
[H0 (!) G0 (!) + H1 (!) G1 (!)] X (!) +

1

2
[H0 (! + ¼) G0 (!) + H1 (! + ¼) G1 (!)] X (! + ¼)

1

2
[H0 (! + ¼) G0 (!) + H1 (! + ¼) G1 (!)] X (! + ¼)

Consider QMF Filters:
H0 (!) = G0 (¡!) = F (!)H0 (!) = G0 (¡!) = F (!)

H1 (!) = G1 (¡!) = ejwF (¡! + ¼)H1 (!) = G1 (¡!) = ejwF (¡! + ¼)

! X̂ (!) =
1

2
[F (!) F (¡!) + F (¡! + ¼) F (! + ¼)] X (!)! X̂ (!) =

1

2
[F (!) F (¡!) + F (¡! + ¼) F (! + ¼)] X (!)

Subband

Coding (cont.)

IMPOSE: jF (!)j2 + jF (! + ¼)j2 = 2jF (!)j2 + jF (! + ¼)j2 = 2

! X̂ (!) = X (!) ! Perfect Reconstruction! X̂ (!) = X (!) ! Perfect Reconstruction

Filter Design

•

QMF filters:

N = # of taps

•

Johnston’s filter coefficients:

→ Symetric

→ NPR

8 tap Johnston filters:
h(0) = h(7) =

0.00938
h(1) = h(6) =

0.06942
h(2) = h(5) = -

0.07065
h(3) = h(4) =

0.489980

h1(n)=(¡1)nh0(N¡1¡n)h1(n)=(¡1)nh0(N¡1¡n)

h0 (N ¡ 1 ¡ n) = h0 (n)h0 (N ¡ 1 ¡ n) = h0 (n)

Filter Design (cont.)
•

Cannot have linear phase FIR filters for QMF condition except
for trivial 2 tap filter

→ Amplitude distortion
•

Well known filters

a(n) = [1, 2, 1]
b(n) = [-1, 2, 6, 2, -1]

→

Simple to implement
Proposed by LeGall

H0 (!) = A (!) G0 (!) = B (!)H0 (!) = A (!) G0 (!) = B (!)

H1 (!) = ej!B (! + ¼)H1 (!) = ej!B (! + ¼)

G1 (!) = e¡j!A (! + ¼)G1 (!) = e¡j!A (! + ¼)

Filter Design (cont.)

h(0) =

0.03489
h(1) = -0.0109
h(2) = -0.0628
h(3) = 0.2239
h(4) = 0.55685
h(5) = 0.35797
h(6) = -0.0239
h(7) = -0.0759

• Smith and Barnwell

Bit Allocation in Subband

Coding:

R = Average # of bits per sample.

RK = Average # of bits per sample of subband

K

M = # of subbands

= variance of coefficients in subband

K:¾2
K¾2
K

RK = R +
1

2
log 2

¾2
KQM

K=1

¡
¾2

K

¢ 1
M

RK = R +
1

2
log 2

¾2
KQM

K=1

¡
¾2

K

¢ 1
M

2D Subband

Coding
•

Separable → Easy to implement
•

Nonseparable

Separable subband

Coding:

X(n1

, n2

)

H0

y

H1

y

H0

y

H1

y

H0

x

H1

x

Analysis

Frequency Domain

¡¼¡¼ +¼+¼ !!

highpass

Lowpass

1D

Frequency Domain (cont.)

2D

1 = Lx

Ly
2 = Lx

Hy
3 = Hx

Ly
4 = Hx

Hy

4 2 2 4

3 1 1 3

3 1 1 3

4 2 2 4

¡¼¡¼ +¼+¼

¡¼¡¼

+¼+¼

!x!x

!y!y

Wavelets
•

A special kind of Subband

Transform
•

Historically developed independent of subband

coding

X(n)

H1

H0 ↓

2

↓

2

↓

2

↓

2

H1

H0
…

…

H1

H0

H0

H1
Designed specially to be
Wavelet Decomposition

Analysis

X(!)X(!)

¦¦
!!

0
4 3 2 1

Famous Wavelet Filters

•

Daubechies
•

Haar

•

Coiflet
4 Tap Daubechies

Low Pass

h(0) =

0.4829
h(1) = 0.8365
h(2) = 0.22414
h(3) = -0.1294

Fractal Compression
•

Founders: Manderbroth

and Barnsley

•

Basic Idea: fixed point transformation
•

X0 is fixed point of function f if f(X0) = X0

•

Example: Transformation

ax + b has a fixed point

X0
given by:

X0 = aX0 + b

•

To transmit

X0 , send

a , b
Then iterate:

will converge regardless of initial guess.

X
(n+1)
0 = aX

(n)
0 + bX

(n+1)
0 = aX

(n)
0 + b

Image Compression

•

Think of Image I as array of numbers
•

Find a function f such that f(I) = I

•

If # of bits to transmit f is smaller than I, achieve
Compression

•

In practice, hard to come up with one transformation
f, for the whole image.

•

Divide up the image into domain and domain and
Range blocks.

Image Compression (cont.)
•

Main idea:

–

Divide up image into M x M “Range”

blocks
–

For each “Range”

block find another 2 M x 2 M

“Domain”

block from the same image such that
for some transformation fK we get fK (DK) = RK

DK

= Domain block k
RK

= Range block k
•

First publicly discussed by Jacquin

in 1989 thesis +

1992 paper
•

Works well if there is self similarity in image.

Image Compression (cont.)

fK

•

What should fK do?
–

Change size of domain block

–

Change orientation of domain block
–

Change intensity of pixels

Image Compression (cont.)

•

fK consists of
–

Geometric transformation: gK

–

Massic

transformation: mK

•

gK : displacement + size + intensity
•

mK : orientation

Transformations:

•

gK

: displaces + adjusts intensity
→

Easy
•

mK

:
i

can be
•

Rotation by 90, 180, -90
•

Reflection about horizontal, vertical, diagonal
•

Identity map
•

Finding transformations is compute intensive
•

Search through all domain blocks + all transformations to find
“BEST”

one
•

Encoding more time than decoding

mK(tij) = i(®Ktij +¢K)mK(tij) = i(®Ktij +¢K)

Transformations (cont.):
•

If image is divided into
N Range blocks → N transformations fK

k

= 1, …N
are its representation.

is approximation to .

•

Collage theorem guarantees convergence to using any

 arbitrary initial guess for image.

Î̂I II

f =
[
k fkf =
[
k fk

Î = f
³
Î
´

Î = f
³
Î
´

Î̂I

Insert Fig. 13.11

Vector Quantization

•

Let denote N

dimensional vectors consisting of N

real valued,

continuous amplitude scalars.

•

Basic Idea: Map into L

possible N

dimensional reconstruction

vectors for .

•

Define a distortion measure:

~f~f

~f~f

~ri~ri 1 · i · L1 · i · L

D = E

"μb~f ¡ ~f

¶T μb~f ¡ ~f

¶#
=

LX
i=1

Z
~f0

2 Ci

μ
~ri ¡ b~f0

¶
d ~f0D = E

"μb~f ¡ ~f

¶T μb~f ¡ ~f

¶#
=

LX
i=1

Z
~f0

2 Ci

μ
~ri ¡ b~f0

¶
d ~f0

Vector Quantization (cont.)

Figure 10.8
Example of vector quantization. The number of Scalars in the vector
is 2, and the number of reconstruction levels is 9.

Properties of Vector Quantization

•

Removes linear dependency between random variables.
•

Removes nonlinear dependency between random variables.
•

Explits

increase in dimensionality.
•

Allows us to code a scalar with less than one bit.
•

Computational and storage requirements are far greater than scalar
quantization.

VQ Removes Linear Dependency

•

Linear transformation can
decorrelate

linearly dependent
(correlated) random variables.

Figure 10.9
Illustration that vector quantization can exploit linear dependence of
scalars in the vector. (a) Probability density function ;
(b) reconstruction levels (filled-in dots) in scalar quantization;
(c) reconstruction levels (filled-in dots) in vector quantization.

pf1f2
(f¶1; f¶2)pf1f2
(f¶1; f¶2)

Some distortion but, reduce # of
reconstruction levels.

VQ Removes Linear Dependency
(cont.)

Figure 10.10
Result of eliminating linear dependence of the two scalars ƒ1

and ƒ2

in
Figure 10.9 by linear transformation of ƒ1

and ƒ2

.

Some distortion but, reduce # of
reconstruction levels.

Rotate (linear transformation)
ƒ1

, ƒ2 to get g1

, g2

uncorrelated.

VQ Removes Nonlinear Dependency

•

Nonlinear dependence cannot be
eliminated by a linear operator.

Figure 10.11
Illustration that vector quantization can exploit
nonlinear dependence of scalars in the vector.
(a) Probability density function ;
(b)

Reconstruction levels (solid dots) in scalar
quantization;
(c)

Reconstruction levels (solid dots) in vector
quantization.

pf1f2
(f¶1; f¶2)pf1f2
(f¶1; f¶2)

Distortion:

a2=2a2=2

Distortion:
5a2=125a2=12

VQ Exploits the Increase in Dimensionality
•

The mean square error due to VQ is approximately less than 4 percent
than scalar quantization with same # of reconstruction levels.

Figure 10.13
Illustration that vector quantization can exploit the
dimensionality increase. In this case, the mean square error
due to vector quantization is approximately 4% less than
that due to scalar quantization. (a) Scalar quantization of ƒ1

and ƒ2

: (b) vector quantization of ƒ1

and ƒ2

.

of reconstruction levels is 2% lower than scalar
Quantization

with same MSE.

⇒

of bits per scalar with VQ

_____ < 1. Look at Figure 10.9.

Scalar:

1 bit per scalar.
VQ:

½

bit per scalar.

Codebook Design Algorithms

•

K-means algorithm.
•

Tree codebooks and binary search.

•

Nearest neighbor.

Codebook Design via K-means

•

Exploit the following two necessary conditions for the optimal
solution:
–

For a vector to be quantized to one of the reconstruction levels, the
optimal quantizer

must choose the reconstruction level , 1 ≤

i ≤

L,
which has the smallest distortion between and . 10(ƒ) = r; iƒƒ

 d(ƒ, ri

) < d(ƒ,rg

) jƒ1

–

Each reconstruction level must minimize the average distortion D

in
Ci

. Minimize w.r.t.

.

•

Find and Ci

iteratively → Problem: local versus global minimum
→ initial guess important.

~f~f

~ri~ri
~f~f ~ri~ri

~ri~ri

E
h
d

³
~f; ~ri

´ ¯̄̄
~f 2 Ci

i
E

h
d

³
~f; ~ri

´ ¯̄̄
~f 2 Ci

i
~ri~ri

~ri~ri

Codebook Design via K-means (cont.)

Figure 10.14
Codebook design by the K-means
algorithm for vector quantization

Complexity of K-means
•

M: training vectors, L:

codewords, N:

dimensional, R:

bits per
scalar.

•

Complexity of Codebook design:
–

ML

evaluation of distortion measure for each iteration.
L = 2NR

= 2B.

–

MLN = NM2NR

additions and mults

per iteration.
–

Example: N = 10, R = 2, M = 10L

results in 100 trillion
operations per iteration.

–

Storage: MN

for training vectors, LN

for reconstruction levels →

(M + 2NR)N.

•

Complexity of operation at the transmitter.
–

Storage of reconstruction levels: N2NR

= NL. If N = 10

and R =
2, storage is 10 million.

–

Number of arithmetic operations N2NR

= NL. If N = 10

and R =
2, 10 million operations per look up.

Tree Codebook and Binary Search
•

Full search is responsible for exponential growth of the number of
operations at the transmitter → Tree codebook

•

Let L

be a power of 2.
•

Basic operation of tree codebook design:
–

Use K-means to divide the N

dimensional space of into two
regions.

–

Divide each of the two regions into two more regions using the
K-means algorithm.

–

Repeat step 2 until there are L

reconstruction levels.

~f~f

Figure 10.15
Example of a tree codebook.

Complexity of Tree Codebook
•

Terms: M = # of training vectors, L = # of codewords and
N = Dimension.

•

Design complexity:
–

Number of arithmetic operators per iteration is 2NMlog2 L, where
the 2 is the distortion measure evaluated twice and log2 L is the # of
stages. For N = 10 and R = 2, the reduction factor compared to the
full search is 26, 000.

–

Storage: approximately the same as full search algorithm. (Storing
training data dominates.)

•

Operation complexity at transmitter:
–

Number of arithmetic operations is 2N2R = 2Nlog2 L. For N = 10 and
R = 2, the reduction factor compared to the full search is 26,000.

–

Storage: The codebook must store all the intermediate
construction levels as well as the final reconstruction levels. →

 Twice as much storage needed as full search.
•

Distortion of full search is slightly smaller than that of tree search.

Nearest Neighbor Design Algorithm

•

Initially proposed by Equitz.
•

Computational complexity grows linearly with the
training set.

•

Find the 2 vectors closest to each other, merge them
into another vector equal to their mean, repeat this
process until the number of vectors is L.

•

Main efficiency is achieved by partitioning the
training data into a K-D tree → multiple merges at
each iteration.

Variations of VQ
•

Multistage VQ reduces storage and search time.
1.

First stage a low rate VQ.
2.

Generate error by subtracting the codeword from the
original.

3.

Code the error by a different VQ.
4.

Repeat steps 2 and 3.

Figure 5.5.2
Multistage Vector Quantization.
At each state an error vector is
computed, which is then used
as the input to the next stage of
VQ. The decoder merely
computes a summation of the
code vectors corresponding to
the received indices.

Variations of VQ (cont.)
•

Parameter extraction techniques:
–

Mean and variance of each input vector are computed and sent
separately.

–

Mean and variance might be coded with DPCM
•

Block classification:
–

Divide the blocks into several classes according to spatial
activity.

–

Design a codebook for each class.
–

Overhead on transmitting the codebook is large.
•

Combine prediction techniques with VQ:
–

Coded quantity is the prediction error rather than intensity
values.

•

VQ of color images exploits the correlation between color
components.

•

Typical rates: .1 to .5 bits per pixel for 4 x 4 pixels as vectors.

Figure 10.40
Example of an image coded by vector quantization. Courtesy of William Equitz.
(a) Original image of 512 x 512 pixels; (b) coded image by vector quantization at
½

bit/pixel. The block size used is 4 x 4 pixels and the codebook is designed by
using a variation of the K-means algorithm. NMSE = 2.7% , SNR = 15.7 dB.

Second Generation Image Coding

•

Exploits the fact that images consist of distinct objects with well
defined and abrupt boundaries with textured interiors.

•

Basic Idea:

Decompose a single image into edges and texture.

is an image containing basically objects with their interior
texture removed. is a remainder image containing texture,
surface roughness and other irregularities of the object interiors.

•

Use contour coding for the shape of . Send coarsely
quantized amplitudes of separately.

•

Use transform coding type techniques for . Or, approximate
the regions inside the boundaries with polynomials.

B (x; y) = d (x; y) + r (x; y)B (x; y) = d (x; y) + r (x; y)

d (x; y)d (x; y)
r (x; y)r (x; y)

d (x; y)d (x; y)
d (x; y)d (x; y)

r (x; y)r (x; y)

Second Generation Image Coding
(cont.)

•

If the smallest allowable object is too small, then requires
too many bits.

•

If only large objects are allowed, then will require

too many
bits.

•

Potential for 100:1 compression ratio.

d (x; y)d (x; y)

r (x; y)r (x; y)

Comparison of Image Coding
Methods

Waveform
Coding

Transform
Coding

Image Model
Coding

Performance
(bits/pixel)

Worst Very good Best
(potentially)

Computations Best Good Worst

Interframe

Image Coding

•

Similar to intraframe

techniques.
•

Extend DPCM from 2-D to 3-D:

Predict each pixel in frame (n + 1)
from the neighboring ones in frame n

and n + 1.
•

Extend 2-D DCT to 3-D DCT:

Set high frequency temporal
coefficients to zero → Impractical due to storage requirements and
delay.

•

Hybrid Transform / Waveform Coding:
–

Compute a 2-D Transform for each frame.
–

Apply a waveform coder such as DPCM along the temporal
direction.

Motion Estimation

•

Applications of motion estimation:
−

Commercial Problems: Bandwidth compression of TV
conferencing and picture phone video signals.

−

Industrial Problems: Dynamic monitoring of industrial
processes. Dynamic robot vision.

−

Medical Problems: Study of heart motion from X-ray movies.
−

Meteorology: Cloud tracking.
−

Transportation: Highway traffic monitoring.
•

Approaches to motion estimation:
–

Region matching methods.
–

Recursive methods.
–

Transform domain methods.
–

Method of differentials.

Region Matching Technique
•

Choose the two dimensional vector in order to minimize the cost
function given by:

•

F[.]

is a function measuring the similarity between two frames
displaced with respect to each other.

•

is the intensity of the frame at time t and location .
•

Objective: Search over a 2-D space to find to minimize the cost
function at .

•

Options for cost function:
–

Cross correlation.
–

Mean squared error.

~d~d

C
³

~d; ~x0; t0
´

= F
h
E (~x0; t0) ; E

³
~x0 ¡ ~d; t0 + ±t

´i
C

³
~d; ~x0; t0

´
= F

h
E (~x0; t0) ; E

³
~x0 ¡ ~d; t0 + ±t

´i

E (~x0; t)E (~x0; t) ~d~d
~d~d

(~x0; t0)(~x0; t0)

Region Matching Technique (cont.)

Figure 8.43
Image translated with displacement of (dx

,dy

)

(a) f(x, y, t-1

); (b) f(x, y, t0

).

Cross Correlation Method
•

Define cross correlation between frame k

and k –

1:

•

Define NCCF

to be the normalized cross correlation function:

•

Basic Idea: Position of the correlation peak is the displacement estimate.
•

Let dmax

denote the maximum horizontal or vertical displacement pixels.
•

Search for the correlation peak requires an evaluation of NCCF at
(2dmax

+ 1)2

different horizontal and vertical shifts. → too many operations.

R
(dx;dy)
SkSk¡1

= E [sk (x; y) sk¡1 (x¡ dx; y ¡ dy)]R
(dx;dy)
SkSk¡1

= E [sk (x; y) sk¡1 (x¡ dx; y ¡ dy)]

NCCF
³

~d
´

=
R

SkSk¡1(~d)r
RSkSk

³
~0
´

RSkSk¡1

³
~0
´NCCF

³
~d
´

=
R

SkSk¡1(~d)r
RSkSk

³
~0
´

RSkSk¡1

³
~0
´

Logarithmic Search

Figure 8.44
Illustration of three-

step search method.

MSE as Region Matching Criterion
•

Jain and Jain have proposed the MSE criterion defined by:

•

Too many matchings

→ too many operations needed to estimate
displacement.

•

3 step search algorithm ⇒

logarithmic.
•

Hierarchical
•

Cost Comparison: 720 x 480, 30 fps
Search range ±

15
Full Search 30 GOPS
Logarithmic 1 GOPS
Hierarchical ½

GOPS
•

Must sacrifice accuracy if give up exhaustive search.

MSE (i; j) =
1

MN

MX
m=1

NX
n=1

[Sk (m; n)¡ Sk¡1 (m + i; n + j)]2MSE (i; j) =
1

MN

MX
m=1

NX
n=1

[Sk (m; n)¡ Sk¡1 (m + i; n + j)]2

Recursive Motion Estimation

•

Basic Idea: Minimize the MSE criterion via steepest descent or
other recursive methods.

•

Let denote the estimate of (dx

,dy

)

after the kth

 iteration:

•

ε

is the step size and error is the MSE.

³
d̂x (k) ; d̂y (k)

´³
d̂x (k) ; d̂y (k)

´
d̂x (k + 1) = d̂x (k)¡ ²

@Error (dx; dy)

@dx

¯̄̄
(dx;dy) =

³
d̂x (k) ; d̂y (k)

´
d̂x (k + 1) = d̂x (k)¡ ²

@Error (dx; dy)

@dx

¯̄̄
(dx;dy) =

³
d̂x (k) ; d̂y (k)

´

d̂y (k + 1) = d̂y (k)¡ ²
@Error (dy; dy)

@dy

¯̄̄
(dx;dy) =

³
d̂x (k) ; d̂y (k)

´
d̂y (k + 1) = d̂y (k)¡ ²

@Error (dy; dy)

@dy

¯̄̄
(dx;dy) =

³
d̂x (k) ; d̂y (k)

´

Recursive Motion Estimation (cont.)

•

Observations:
–

Evaluation of partial derivatives is noisy →

 Presmoothing

helps.
–

Can potentially achieve subpixel

accuracy → need to

estimate the derivatives at subpixel

accuracy
→Interpolation is needed.

–

Iteration can be repeated many times over the same
pixel or it can be used only once for a pixel and then
move on to the next pixel.

Frequency Domain Methods for
Motion Estimation

•

Basic Idea:

Fourier transform of the shifted version of E(x,y)

is
given by:

is the Fourier Transform of E(w,y).
•

Solve a linear system of equations corresponding to different (wx

,wy

)

 to find dx

and dy

.
•

Shortcomings: Only applies to the case where all the objects move
in the same direction and by the same amount against a uniform
background.

•

Involves phase unwrapping → computationally expensive.

E (x¡ dx; y ¡ dy) () S (wx; wy) exp [¡j2¼ (wxdx + wydy)]E (x¡ dx; y ¡ dy) () S (wx; wy) exp [¡j2¼ (wxdx + wydy)]

S (wx; wy)S (wx; wy)

Method of Differential for Motion
Estimation

•

Basic Idea: Brightness Constraint Equation:

•

u

and v

denote the components of motion along x

and y

directions.
•

Comments:
–

Computing derivatives is noisy particularly when there is aliasing
due to temporal under sampling.

–

Brightness constraint equation only determines the component
of motion perpendicular to the edges.

–

Determination of the component of motion parallel to the edges
is an ill conditioned problem. → Not a shortcoming of the
method.

u
@E

@x
+ v

@E

@y
+

@E

@t
= 0u

@E

@x
+ v

@E

@y
+

@E

@t
= 0

Method of Differential for Motion
Estimation (cont.)

•

Ways to overcome ill posedness:
−

Assume a whole block has moved with the same velocity and
has edges both along and perpendicular to the direction of
motion.

−

Regularize the ill conditioned problem by introducing
smoothness constraints. Define:

Minimize:

²b = u
@E

@x
+ v

@E

@v
+

@E

@t
²b = u

@E

@x
+ v

@E

@v
+

@E

@t

²2c =

μ
@u

@x

¶2

+

μ
@u

@y

¶2

+

μ
@v

@x

¶2

+

μ
@v

@y

¶2

²2c =

μ
@u

@x

¶2

+

μ
@u

@y

¶2

+

μ
@v

@x

¶2

+

μ
@v

@y

¶2

²2 =

Z Z ¡
®2²2c + ²2b

¢
dxdy²2 =

Z Z ¡
®2²2c + ²2b

¢
dxdy

Color Image Coding
RGB → YIQ

Y: most of the energy is compacted here

24 Y (n1; n2)
I (n1; n2)
Q (n1; n2)

35 =

24 0:299 0:587 0:114
0:596¡ 0:274¡ 0:322
0:211¡ 0:523 0:312

35 ²
24 R (n1; n2)

G (n1; n2)
B (n1; n2)

3524 Y (n1; n2)
I (n1; n2)
Q (n1; n2)

35 =

24 0:299 0:587 0:114
0:596¡ 0:274¡ 0:322
0:211¡ 0:523 0:312

35 ²
24 R (n1; n2)

G (n1; n2)
B (n1; n2)

35

I
Q : relatively small amount of energy

Black and white image
Y bits/pixel

Color image
≈

1,5 y bits/pixel

• Requires about 50% but rate relative to Y component.

24 R̂ (n1; n2)

Ĝ (n1; n2)

B̂ (n1; n2)

35 =

24 1:000 0:956 0:621
1:000¡ 0:272¡ 0:647
1:000¡ 1:106 1:703

35 ²
24 Ŷ (n1; n2)

Î (n1; n2)

Q̂ (n1; n2)

3524 R̂ (n1; n2)

Ĝ (n1; n2)

B̂ (n1; n2)

35 =

24 1:000 0:956 0:621
1:000¡ 0:272¡ 0:647
1:000¡ 1:106 1:703

35 ²
24 Ŷ (n1; n2)

Î (n1; n2)

Q̂ (n1; n2)

35

Figure 7.9
Y, I and Q components of the color image
in Figure 7.8(d). (a) Y component; (b) I
component; (c) Q component.

Figure 3.3.3
Two-dimensional joint probability densities of
the three-dimensional RGB signal, for a test
picture, showing the strong correlation
between components. (a) B vs. G, (b) R vs.
B, and (c) R vs. G (from frei

et al. [3.3.9]).

JPEG Standard
•

Joint ITU ISO standard

•

Still image compression

Image

Encoding

DCT Quantizer Entropy
Coder

Header
Table

Data

Quantization
Tables

Coding
Tables

JPEG Standard (cont.)

Decoded
Image

Decoder

IDCTInverse
Quantizer

Entropy
Decoder

Header
Table

Data

JPEG
•

Compressing color images
•

Can compress R, G, B separately
•

More efficient to reduce correlation
convert RGB to YUV.

•

How to Design Quantization Tables?
*

Psychovisual

Experiments
*

Bit Rate Control

bij = r +
1

2
log2

¾2
i;jnQ

i;j ¾2
i;j

o 1
64

bij = r +
1

2
log2

¾2
i;jnQ

i;j ¾2
i;j

o 1
64

8 x 8 blocks
r

= total # of bits
bij

= bits to (i, j)

coefficient
= variance of bij¾2

ij¾2
ij

Entropy Coding
•

DC coefficients:
Difference between DC coefficients of neighboring blocks is
quantized + coded.

•

AC coefficients:
•

Scan coefficients
•

Threshold to set some to 0
•

Run length code position
•

Quantize + Huffman code amplitude

JPEG MODES
1.

Sequential → most common

2.

Progressive

MSB

LSB

Spectral Selection Successive Approximation

JPEG MODES (cont.)
3.

Hierarchical

S1

S2

LR

HRΣ

X
↑

2

↓

2 ↑

2Encode

Decode

Encode Decode

Decode

L PF

+ -
+

+

LR = Low Resolution
HR = High Resolution

MPEG Standard

•

ISO standard 11172 = MPEG 1.
•

MPEG = Moving Pictures Expert Group.

•

MPEG 1:
Coding of moving pictures and associated audio for
digital storage

media at up to about 1.5 Mb/s.

•

ISO standard 13818 = ITU H.262.
“Generic coding of moving Pictures and associated
audio”

= MPEG 2.

•

Motivation for MPEG 2: Higher bit rate, greater input
flexibility.

•

MPEG 4 → very low bit Rate 1998.

MPEG
•

Only specifies the syntax of the coded bit stream

•

Lots of room for flexibility and optimization.
•

MPEG standards are application independent, BUT
–

MPEG 1 → CDROM

–

MPEG 2 → Digital TV
•

Many parts to standard
–

Systems

–

Audio
–

Video ←

–

Conformance testing

MPEG 1

•

Does not recognize fields and frames.
•

Only non-interlaced data

•

Basic Concepts
–

Inter frame and Intra frame coding

–

DCT
–

Block based motion compensation

–

Huffman coding for motion vectors and quantized
DCT coefficients

–

Inter frame coding:
Predictive AND

Interpolative

Picture Types:
•

Three types

•

I pictures: Intra
•

P pictures: Predicted from past I or P frames

•

B pictures: Bidirection

predicted either from past or
future I or P frames

•

Example

Picture Types (cont.)

Bidirectional Motion Compensation

Block Diagram of MPEG Encodes

•

Assumes 4:2:0 color subsampling

N x N luminance
N/2 x N/2 each of chrominance

MPEG 2:
•

Quite similar to MPEG 1
•

Differences from MPEG 1:
–

Interlaced pictures → affects motion compensation
–

Color subsampling
4 : 2 : 2 and 4 : 4 : 4 as well as 4 : 2 : 0

Y Cr Cb

4 : 2 : 0 N x N

4 : 2: 2 N x N

4 : 4 : 4 N x N N x N N x N

N

2
£ N

2

N

2
£ N

2

N

2
£ N

2

N

2
£ N

2

N

2
£N

N

2
£N

N

2
£N

N

2
£N

•

Profiles + levels

Profiles + Levels
•

Profiles:
–

Simple

4 : 2 : 0

–

Main

4 : 2 : 0
–

Main +

4 : 2 : 0

–

Next

4 : 2 : 2
•

Most applications → Main

•

Next includes hierarchical representation → terrestrial
broadcasting

•

Main + between main and Next
•

Simple, same as main but no bidirectional prediction →

 low cost
•

Levels: specifies max spatio-temporal resolution + bit
Rate.

Nonscalable

Scalable

Scalability
•

Allows layered representation of Coded bit stream.

•

4 modes
–

Data Partitioning: 2 channels, header + data

–

SNR Scalability: Applications with video quality at
multiple quality levels

–

Spatial scalability
–

Temporal scalability

H. 261 Video Coding
•

Collaboration between Telecom operators and
manufacturers of video conferencing equipment

•

H. 261 or p x 64 kbps
P = 1 → 30

•

H. 320 is complete family
–

H. 261 video

–

G. 722, G. 726, G. 728
–

H. 221 → Multiplexing

–

H. 230, H. 242 → Handshaking
–

H. 233 → Encryption

H. 261
•

Format CIF OR QCIF
•

CIF = Common Intermediate Format
Y:

352 x 288
Cb

:

176 x 144
Cr

:

176 x 144
•

QCIF ½ x ½ CIF
•

Similar to MPEG
–

Motion Comp
–

DCT
–

VLC
•

No bidirectional
•

BCM codes for error detection

	Objectives of Image Coding
	Slide Number 2
	Issues in Image Coding
	Slide Number 4
	Methods of Reconstruction Level Assignments
	Methods of Reconstruction Level Assignments cont.
	Methods of Reconstruction Level Assignments cont.
	Scalar Case (cont.)
	Scalar Case (cont.)
	Scalar Case (cont.)
	Scalar Case (cont.)�Solution to Optimization Problem
	Slide Number 12
	Slide Number 13
	Scalar Case (cont.)
	Scalar Case (cont.)
	Slide Number 16
	Vector Case
	Slide Number 18
	Codeword Design: Bit Allocation
	Overview
	Overview
	Methods of Bit Assignment (cont.)
	Methods of Bit Assignment (cont.)
	Methods of Bit Assignment (cont.)
	Arithmetic Coding
	Mechanics fo Arithmetic Coding
	Example of Tag Generation:
	Deciphering the Tag:
	Generating a binary code:
	Example Generating a binary code:
	Efficiency of Arithmetic Code
	Dictionary Techniques
	Static Dictionary:
	Adaptive Dictionary:
	Example
	Example (cont.)
	Example (cont.)
	Encoding steps:
	Adaptive Dictionary
	What to Code �(Classification of Image Coding Systems)
	What to Code �(Classification of Image Coding Systems) (cont.)
	Waveform Coder
	Improvements of PCM
	Improvements of PCM (cont.)
	Improvements of PCM (cont.)
	Improvements of PCM (cont.)
	Improvements of PCM (cont.)
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Delta Modulation (DM)
	Delta Modulation (DM) (cont.)
	Delta Modulation (DM) (cont.)
	Slide Number 54
	Slide Number 55
	Differential Pulse Code Modulation (DPCM)
	Differential Pulse Code Modulation (DPCM) (cont.)
	Slide Number 58
	Transform Image Coding
	Transform Image Coding
	Examples of Transforms
	Examples of Transforms (cont.)
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Discrete Cosine Transform
	Discrete Cosine Transform (cont.)
	Discrete Cosine Transform (cont.)
	Discrete Cosine Transform (cont.)
	Discrete Cosine Transform (cont.)
	Discrete Cosine Transform (cont.)
	Discrete Cosine Transform (cont.)
	Discrete Cosine Transform (cont.)
	DCT
	DCT (cont.)
	DCT (cont.)
	DCT (cont.)
	Discarding Transform Coefficients
	Discarding Transform Coefficients
	Scalar Quantization of a Vector Source
	DCT-Coded Images
	DCT-Coded Images (cont.)
	Quantization of DCT Coefficients
	Blocking Effect Reduction
	Adaptive Coding and Vector Quantization
	Iterative Procedures for Reduction of Blocking Effects in Transform Image Coding�by�Ruth Rosenholtz and Avideh Zakhor
	Hybrid Coding
	Hybrid Coding (cont.)
	Hybrid Coding (cont.)
	Two-Channel Image Coder
	Two-Channel Image Coding (cont.)
	Pyramid Coding and Subband Coding
	Pyramid Coding and Subband Coding (cont.)
	Pyramid Coding and Subband Coding (cont.)
	Slide Number 98
	Gaussian Pyramid Representation
	Laplacian Pyramid Representation
	Laplacian Pyramid Image Coding
	Subband Coding
	Subband Coding (cont.)
	Filter Design
	Filter Design (cont.)
	Filter Design (cont.)
	Bit Allocation in Subband Coding:
	2D Subband Coding
	Frequency Domain
	Frequency Domain (cont.)
	Wavelets
	Famous Wavelet Filters
	Fractal Compression
	Image Compression
	Image Compression (cont.)
	Image Compression (cont.)
	Image Compression (cont.)
	Transformations:
	Transformations (cont.):
	Insert Fig. 13.11
	Vector Quantization
	Vector Quantization (cont.)
	Properties of Vector Quantization
	VQ Removes Linear Dependency
	VQ Removes Linear Dependency (cont.)
	VQ Removes Nonlinear Dependency
	VQ Exploits the Increase in Dimensionality
	Codebook Design Algorithms
	Codebook Design via K-means
	Codebook Design via K-means (cont.)
	Complexity of K-means
	Tree Codebook and Binary Search
	Complexity of Tree Codebook
	Nearest Neighbor Design Algorithm
	Variations of VQ
	Variations of VQ (cont.)
	Slide Number 137
	Second Generation Image Coding
	Second Generation Image Coding (cont.)
	Comparison of Image Coding Methods
	Interframe Image Coding
	Motion Estimation
	Region Matching Technique
	Region Matching Technique (cont.)
	Cross Correlation Method
	Logarithmic Search
	MSE as Region Matching Criterion
	Recursive Motion Estimation
	Recursive Motion Estimation (cont.)
	Frequency Domain Methods for Motion Estimation
	Method of Differential for Motion Estimation
	Method of Differential for Motion Estimation (cont.)
	Color Image Coding
	Slide Number 154
	Slide Number 155
	JPEG Standard
	JPEG Standard (cont.)
	JPEG
	Entropy Coding
	JPEG MODES
	JPEG MODES (cont.)
	MPEG Standard
	MPEG
	MPEG 1
	Picture Types:
	Picture Types (cont.)
	Bidirectional Motion Compensation
	Block Diagram of MPEG Encodes
	MPEG 2:
	Profiles + Levels
	Slide Number 171
	Scalability
	H. 261 Video Coding
	H. 261

