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Iterative Procedures for Reduction of
Blocking Effects in Transform
Image Coding
Ruth Rosenholtz and Avideh Zakhor

Abstract—We propose a new iterative block reduction technique
based on the theory of projection onto convex sets. The basic idea
behind this techni is to i a number of constraints on the coded
image in such a way as to restore it to its original artifact-free form. One
such constraint can be derived by exploiting the fact that the transform-
coded image suffering from blocking effects contains high-frequency
vertical and horizontal artifacts corresponding to vertical and horizontal
discontinuities across boundaries of neighboring blocks. Since these
components are missing in the original uncoded image, or at least can be
guaranteed to be missing from the original image prior to coding, one
step of our iterative procedure consists of projecting the coded image
onto the set of signals that are bandlimited in the horizontal or vertical
directions. Another constraint we have chosen in the restoration process
has to do with the quantization intervals of the transform coefficients.
Specifically, the d levels with transform coefficient
quantizers can be used as lower and upper bounds on transform coeffi-
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cients, which in turn define boundaries of the convex set for projection.
Thus, in projecting the *‘out-of-bound”’ transform coefficient onto this
convex set, we will choose the upper (lower) bound of the quantization
interval if its value is greater (less) than the upper (lower) bound. We
present a few examples of our proposed approach.

I. INTRODUCTION

Transform coding is one of the most widely used image compres-
sion techniques. It is based on dividing an image into small blocks,
taking the transform of each block and discarding high-frequency
coefficients and quantizing low-frequency coefficients. Among vari-
ous transforms, the discrete cosine transform (DCT) is one of the
most popular because its performance for certain class of images is
close to that of the Karhunen-Loeve transform (KLT), which is
known to be optimal in the mean squared error sense.

Although DCT is used in most of today’s standards such as JPEG
and MPEG, its main drawback is what is usually referred to as the
*‘blocking effect.”” Dividing the image into blocks prior to coding
causes blocking effects—discontinuities between adjacent
blocks—particularly at low bit rates. In this paper, we present an
iterative technique for the reduction of blocking effects in coded
images.

II. ITERATIVE RESTORATION METHOD

The block diagram of our proposed iterative approach is shown in
Fig. 1. The basic idea behind our technique is to impose a number
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Fig. 1. Block diagram of the iterative algorithm.

of constraints on the coded image in such a way as to restore it to its
original artifact-free-form. We derive one such constraint from the
fact that the coded image with N x N blocks has high-frequency
horizontal and vertical artifacts corresponding to the discontinuities
at the edges of the N X N blocks. Therefore, one step of our
procedure consists of bandlimiting the image in the horizontal and
vertical directions. We refer to this constraint as the filtering
constraint.

We derive the second constraint from the quantizer and thus refer
to it as the quantization constraint. Because the quantization inter-
vals for each DCT coefficient is assumed to be known in decoding a
DCT encoded image, the quantization constraint ensures that in
restoring images with blocking effects, DCT coefficients of N x N
blocks remain in their original quantization interval.

If S, denotes the set of bandlimited images, and S, denotes the
set of images whose N X N DCT coefficients lie in specific quanti-
zation intervals, our goal can be stated as that of finding an image in
the intersection of S, and S,. One way to achieve this is to start
with an arbitrary element in either of the two sets and iteratively
map it back and forth to the other set, until the process converges to
an element in the intersection of the two sets. Under these condi-
tions convergence can be guaranteed by the theory of projection
onto convex sets (POCS) if sets S, and S, are convex, and if the
mapping from each set to the other is a projection [6]. By definition,
the projection of an element x in set A onto set B is equivalent to
finding the closest element, according to some metric, in B to x.

To apply the above idea to our problem, we first notice that two

sets S, and S, are both convex. We also choose the mean squared
error as our metric of closeness. This implies that a projection from
8§, to 8, can be accomplished by any bandlimitation algorithm such
as ideal low-pass filtering. It also implies that projection from §, to
8§, can be accomplished by moving N x N DCT coefficients that
are outside their designated quantization interval to the closest
boundary of their respective quantization intervals. For instance, if
a particular N x N DCT coefficient, which is supposed to be in the
range [a, b], takes on a value greater than b, it is projected to b.
Alternatively, if it takes on a value smaller than a it is projected
onto a.

Having explained the constraints, convex sets, and projections,
we now summarize our proposed iterative procedure shown in Fig.
1. In the first part of each iteration, we low pass filter, or bandlimit,
the image that has high-frequency horizontal and vertical compo-
nents corresponding to the discontinuities between N X N blocks.
In the second part of each iteration we apply the quantization
constraint as follows. First we divide the image into N X N blocks
and take the DCT of each. Then we project any coefficient outside
its quantization range onto its appropriate value. Under these condi-
tions, the POCS theory guarantees that iterative projection between
the sets S, and S, results in convergence to an element in the
intersection of the two sets.

III. EXPERIMENTAL RESULTS

Fig. 2(a) shows the original, unquantized 512 x 512 Lena, and
(b), (c), and (d) show its JPEG encoded version to 0.43, and 0.24,
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(d)

Fig. 2(a) Original 512 x 512 image, Lena. 2(b) Lena quantized to 0.43
bpp. 2(c) Lena quantized to 0.24 bpp. 2(d) Lena quantized to 0.15 bpp.

and 0.15 bpp, respectively. The quantization tables for Figs. 2(b),
(c), and (d) are included in the Appendix.

Strictly speaking, the band-limitation portion of our algorithm
corresponds to a true projection if the image under consideration is
convolved with an ideal low-pass filter. Since an ideal low-pass
filter cannot be implemented in practice, we have chosen to approxi-
mate it with a 3 x 3 finite impulse response (FIR) filter of the form

h(0,0) = 0.2042,
h(0,1) = h(0, = 1) = h(1,0) = h(~1,0) =0.1239 (1)
h(0,2) = (0, - 2) = h(2,0) = A(2,0) = 0.0751.

We now show examples of our iterative algorithm. Fig. 3(a) shows
five iterations of our algorithm applied to the 0.43-bpp quantized
image of Fig. 2(b). The FIR filter of (1) was used
for the band-limitation step. As Fig. 2(b) shows, blocking artifact
has been removed without introducing excessive blurring. For com-
parison purposes, the result of applying the low-pass filter in (1) to
Fig. 2(b) for five times, without applying the quantization con-
straint, is also shown in Fig. 3(b). Although consecutive low-pass
filtering removes most of the blocking effect, it blurs the image in a
noticeable way. We have found that applying the low-pass filter of
(1) once rather than five times, results in a less blurry image than in
Fig. 3(b), but at the same time does not remove all the blocking
effect.

Figs. 4(a) and (b) show application of our algorithm to the
0.24-bpp quantized image of Fig. 2(c) for 5 and 20 iterations,
respectively. The FIR filter of (1) was used for the band-limitation
step. As seen, the blocking artifact is better removed in
Fig. 4(b) than in 4(a), while they are as sharp as each other. For
comparison purposes, Fig. 4(c) and (d) show the result of applying
the low-pass filter of (1) to Fig. 2(c), 5 and 20 times, respectively.
Comparing Fig. 4(c) and 4(d) to Fig. 4(a) and (b), respectively, we
find that the latter pair are more blurry than the former. Thus,
applying the quantization constraint prevents the images from be-
coming excessively blurry.

Fig. 5(a) shows application of our algorithm to the 0.15-bpp
quantized image of Fig. 2(d) for 20 iterations. The FIR filter of (1)
was used for the band-limitation step. For comparison purposes,
Fig. 5(b) shows the result of applying the low-pass filter of (1) to
Fig. 2(d), 20 times. Comparing Fig. 5(b) to 5(a), we find that the
latter is considerably more blurry than the former.

IV. ConcLUSIONS

The major conclusions to be drawn from this paper are as
follows: 1) the proposed iterative algorithm using a 3 X 3 low-pass
filtering of (1) results in images that are free of blocking artifacts
and excessive blurring; 2) low-pass filtering by itself could remove
blockiness but at the expense of increased blurriness.

It is conceivable to generate images similar to Figs. 5(a) and 4(b)
without having to apply our algorithm for as many as 20 iterations.
Qur conjecture is that this could be achieved by increasing the
region of support of the impulse response of the filter of (1). In
practical hardware implementations however, 3 X 3 convolvers are
more readily available than, say, 30 x 30 ones.

We have checked the convergence of our algorithm and found
that it converges after 20 iterations or so. This is encouraging since
there is no guarantee that the intersections of our particular convex
sets is nonempty, and the theory of POCS only guarantees conver-
gence in situations where the intersection is nonempty.

One way to increase the likelihood of convergence is to vary the
confidence with which the ideal solution is in the
chosen constraint set, by varying its size. For example, if we choose
prototype constraint sets as in [10], using the statistics of the



Fig. 3(a) Result of applying the iterative algorithm to Fig. 2(b) for five
iterations with the low-pass filter of (1) used for bandlimitation. (b) Result of
low-pass filtering Fig. 2(b) five times using the filter in (1).

quantization noise, we can change the boundaries and the size of the
constraint set in a controlled fashion and therefore increase the
likelihood of a solution in the intersection of the constraint sets.
Examples of such prototype constraint sets include bounded varia-
tion from the Weiner solution and pointwise adaptive smoothness.
The latter constraint has the obvious advantage of being locally
adaptive to changes in the characteristics of the image. Projection
onto fuzzy sets is another way of increasing the size of our convex
sets [9].

APPENDIX

The quantization table for Fig. 2(b) is

20 24 28 32 36 80 98 144
24 24 28 34 52 70 128 184
28 28 32 48 74 114 156 190
2 34 48 58 112 128 174 196
36 52 74 112 136 162 206 224
80 70 114 128 162 208 242 200
98 128 156 174 206 242 240 206
144 184 190 196 224 200 206 208

For Fig. 2(c) it is

50 60 70 70 90 120 255 255
60 60 70 96 130 255 255 255
70 70 80 120 200 255 255 255
70 96 120 145 255 255 255 255
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(d)

Fig. 4(a) Result of applying the iterative algorithm to Fig. 2(c) for 5
iterations with the low-pass filter of (1) used for bandlimitation. (b) Result of
applying the iterative algorithm to Fig. 2(c) for 20 iterations with the
low-pass filter of (1) used for bandlimitation. (c) Result of low-pass filtering
Fig. 2(c) five times using the filter in (1). (d) Result of low-pass filtering Fig.
2(c) 20 times using the filter in (1).
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)
Fig. 5(a) Result of applying the iterative algorithm to Fig. 2(d) for 20
iterations with the low-pass filter of (1) used for bandlimitation. (b) Result of
low pass filtering Fig. 2(d) 20 times using the filter in (1).
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and for Fig. 2(d) it is:
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255
255
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255
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255
255
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255
255
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255
255
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110 130 150 192 255 255 255 255
130 150 192 255 255 255 255 255
150 192 255 255 255 255 255 255
192 255 255 255 255 255 255 255
255 255 255 255 255 255 255 255
255 255 255 255 255 255 255 255
255 255 255 255 255 255 255 255
255 255 255 255 255 255 255 255

(1]
(2]

[3]

[4]

(51

(6]

[7

(8]

]

(10]

The 255 entry in the above tables indicates that the coefficient was
discarded.
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behind this technique Is to impose a number of constraints on the coded
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image in such a way as to restore it to its original artifact-free form. One
such constraint can be derived by exploiting the fact that the transform-
coded image suffering from blocking effects ins high-frequency
verllﬂlmd‘ i l artifacts ding to vertical and horizontal

imuith b ies of peighboring blocks. Since these

u
components are missing in the original uncoded image, or at least can be
guaranteed lo be missing !m the oﬂﬂul image pr!or to coding, one
step of our | i of proj the coded image
onto the set of dplk that are bandlimited in the horizontal o vertical
directions. Another consiraint we have chosen in the restoration process
bas to do with the quantization intervals of the transform coefficients.
Specifically, the decision levels inted with i coefficient
quantizers can be used as lower and upper bounds on transform coeffi-
clents, which in turn define boundaries of the convex set for projection.

Il'.r 1] ‘h-ll 1ol =b d* Mlolb‘ll

convex sof, we will chooss the upper (ower) bound of the guantizstion
cnvex ssf ws will b upper (ower; sound of tae

interval if its value is greater (less) than the upper ﬂm!!l') bound. We
present a few examples of our proposed approach.

1. INTRODUCTION

Transform coding is one of the most widely used image compres-
sion techniques. It is based on dividing an image into small blocks,
taking the transform of each block and discarding high-frequency
coefficients and quantizing low-frequency coefficients. Among vari-

ous transfi the di nusine t m (DCT) is one of the
most popular b its perfi for certain class of images is
close lu that of the Karh Loeve form (KLT), which is

known to be optimal in the mean squared error sense.

Although DCT is used in most of today's standards such as JPEG
and MPEG, its main drawback is what is usually referred to as the
“blocking effect.”” Dividing the image into blocks prior to coding
causes blocking effects—discontinuities between adjacent
blocks—particularly at low bit rates. In this paper, we present an
iterative technique for the red of blocking effects in coded
images.

II. ITerATIVE RESTORATION METHOD

The block diagram of our proposed iterative approach is shown in
Fig. 1. The basic idea behind our technique is to impose a number
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of constraints on the coded image in such a way as to restore it 1o its
original artifact-free-form. We derive one such constraint from the
fact that the coded image with N X N blocks has high-frequency

sets 5, and S, are both convex. We also choose the mean squared
error as our metric of closeness. This implies that a projection from
8, to S, can be accomplished by any bandlimitation algorithm such

hori 1 and | artifacts ponding to the di inuities a5 ideal low-pass filtering. It also implies that projection from S, to
at the edges of the N X N blocks. Therefore, one step of our 5, can be accomplished by moving N X N DCT coefficients that
procedure consists of bandlimiting the image in the horizontal and  are ide their designated quantization interval to the closest

vertical directions. We refer to this constraint as the filtering
constraint.

We derive the second constraint from the quantizer and thus refer
to it as the quantization constraint. Because the quantization inter-
vals for each DCT coefficient is assumed to be known in decoding a
DCT encoded image, the quantization constraint ensures that in
restoring images with blocking effects, DCT coefficients of N X N
blocks remain in their original quantization interval.

If §, denotes the set of bandlimited images, and S, denotes the
set of images whose N x N DCT coefficients lie in specific quanti-
zation intervals, our goal can be stated as that of finding an image in
the intersection of S, and S;. One way to achieve this is to start
with an arbitrary element in either of the two sets and iteratively
map it back and forth to the other set, until the process converges to
an element in the intersection of the two sets. Under these condi-
tions convergence can be guaranteed by the theory of projection
onto convex sets (POCS) if sets S, and S, are convex, and if the
mapping from each set to the other is a projection [6]. By definition,
the projection of an element x in set A onto set B is equivalent to
finding the closest element, according to some metric, in B to x.

To apply the above idea to our problem, we first notice that two

t dary of their respective quantization intervals. For instance, if
a particular N X N DCT coefficient, which is supposed to be in the
range [a, b, takes on a value greater than b, it is projected to b.
Alternatively, if it takes on a value smaller than & it is projected
onto a.

Having explained the constraints, convex sets, and projections,
we now ize our proposed iterative p shown in Fig.
1. In the first part of each iteration, we low pass filter, or bandlimit,
the image that has high-frequency horizontal and vertical compo-
nents ponding to the di inuities & N % N blocks.
In the second part of each iteration we apply the quantization
constraint as follows. First we divide the image into N x N blocks
and take the DCT of each. Then we project any coefficient outside
its quantization range onto its appropriate value, Under these condi-
tions, the POCS theory guarantees that iterative projection between
the sets 5, and S, results in convergence to an element in the
intersection of the two sets.

III. EXPERIMENTAL RESULTS

Fig. 2(a) shows the original, unquantized 512 x 512 Lena, and
(b), (c), and (d) show its JPEG encoded version to 0.43, and 0.24,
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Fig. 2(a) Original 512 x 512 image, Lena. 2(b) Lena quantized to 0.43
bpp. 2(c) Lena quantized to 0.24 bpp. 2(d) Lena quantized to 0.15 bpp.

and 0.15 bpp, respectively. The quantization tables for Figs. 2(b),
(c), and (d) are included in the Appendix.

Strictly speaking, the band-limitation portion of our algorithm
corresponds to a true projection if the image under consideration is
convolved with an ideal low-pass filter. Since an ideal low-pass
filter cannot be implemented in practice, we have chosen to approxi-
mate it with a 3 X 3 finite impulse response (FIR) filter of the form

h(0,0) = 0.2042,
h(0,1) = h(0, — 1) = k(1,0) = h(—1,0) = 0.1239 (1)
h(0,2) = h(0, - 2) = k(2,0) = k(2,0) = 0.0751.

We now show examples of our iterative algorithm. Fig. 3(a) shows
five iterations of our algorithm applied to the 0.43-bpp quantized
image of Fig. 2(b). The FIR filter of (1) was used
for the band-limitation step. As Fig. 2(b) shows, blocking artifact
has been r d without introducing ive blurring. For com-
parison purposes, the result of applying the low-pass filter in (1) to
Fig. 2(b) for five times, without applying the quantization con-
straint, is also shown in Fig. 3(b). Although consecutive low-pass
filtering removes most of the blocking effect, it blurs the image in a
noticeable way. We have found that applying the low-pass filter of
(1) once rather than five times, results in a less blurry image than in
Fig. 3(b), but at the same time does not remove all the blocking
effect.

Figs. 4(a) and (b) show application of our algorithm to the
0.24-bpp quantized image of Fig. 2(c) for 5 and 20 iterations,
respectively. The FIR filter of (1) was used for the band-limitation
step. As seen, the blocking artifact is beter removed in
Fig. 4(b) than in 4(a), while they are as sharp as each other. For
comparison purposes, Fig. 4(c) and (d) show the result of applying
the low-pass filter of (1) to Fig. 2(c), 5 and 20 times, respectively.
Comparing Fig. 4(c) and 4(d) to Fig. 4(a) and (b), respectively, we
find that the latter pair are more blurry than the former. Thus,
applying the quantization -constraint prevents the images from be-
coming excessively blurry.

Fig. 5(a) shows application of our algorithm to the 0.15-bpp
quantized image of Fig. 2(d) for 20 iterations. The FIR filter of (1)
was used for the band-limitation step. For comparison purposes,
Fig. 5(b) shows the result of applying the low-pass filter of (1) to
Fig. 2(d), 20 times. Comparing Fig. 5(b) to 5(a), we find that the
latter is considerably more blurry than the former.

IV. ConcLUSIONS

The major conclusions to be drawn from this paper are as
follows: 1) the proposed iterative algorithm using a 3 x 3 low-pass
filtering of (1) results in images that are free of blocking artifacts
and excessive blurring; 2) low-pass filtering by itself could remove
blockiness but at the expense of increased blurriness.

It is conceivable to generate images similar to Figs. 5(a) and 4(b)
without having to apply our algorithm for as many as 20 iterations.
Our conjecture is that this could be achieved by increasing the
region of support of the impulse response of the filter of (1). In
practical hardware implementations however, 3 x 3 convolvers are
more readily available than, say, 30 x 30 ones.

We have checked the convergence of our algorithm and found
that it converges after 20 iterations or so. This is encouraging since
there is no g that the intersections of our particular convex
sets is nonempty, and the theory of POCS only guarantees conver-
gence in situations where the intersection is nonempty.

One way to increase the likelihood of convergence is to vary the
confidence with which the ideal solution is in the
chosen constraint set, by varying its size. For example, if we choose
prototype constraint sets as in [10], using the statistics of the
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(a)

Fig. 3(a) Result of applying the iterative algorithm to Fig. 2(b) for five
iterations with the low-pass filter of (1) used for bandlimitation. (b) Result of

low-pass filtering Fig. 2(b) five times using the filter in (1),

quantizalion noise, we can change the boundaries and the size of the
constraint set in a controlled fashion and therefore increase the
likelihood of a solution in the i of the co int sets.
Examples of such prototype constraint sets include bounded varia-
tion from the Weiner solution and pointwise adaptive smoothness.
The latter constraint has the obvious advantage of being locally
adaptive to changes in the characteristics of the image. Projection
onto fuzzy sets is another way of increasing the size of our convex
sets [9].

APPENDIX
The quantization table for Fig. 2(b) is

20 24 28 32 36 80 98 144
24 24 28 34 52 70 128 184
28 28 32 48 74 114 156 190
2 34 48 58 12 128 174 196
36 52 74 112 136 162 206 224
80 70 14 128 162 208 242 200
98 128 156 174 206 242 240 206
144 184 190 196 224 200 206 208

For Fig. 2(c) it is

50 60 70 70 90 120 255 255
60 60 70 96 130 255 255 255
70 70 80 120 200 255 255 255
70 9 120 145 255 255 255 255

(a)

iy S SRR T

(d)
Fig. 4(a) Result of applying the iterative algorithm to Fig. 2(c) for 5
iterations with the low-pass filter of (1) used for bandlimitation. (b) Result of
applying the iterative algorithm to Fig. 2(c) for 20 iterations with the
low-pass filter of (1) used for bandlimitation. (c) Result of low-pass filtering
Fig. 2(c) five times using the filter in (1). (d) Result of low-pass filtering Fig.
2(c) 20 times using the filter in (1).
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(b)
Fig. 5(a) Result of applying the iterative algorithm to Fig. 2(d) for 20
iterations with the low-pass filter of (1) used for bandlimitation. (b) Result of
low pass filtering Fig. 2(d) 20 times using the filter in (1),

% 130 200 255 255 255 255 255
120 255 255 255 255 255 255 255
255 255 255 255 255 255 255 255
255 255 255 255 255 255 255

and for Fig. 2(d) it is:

110 130 150 192 255 255 255 255
130 150 192 255 255 255 255 255
150 192 255 255 255 255 255 255
192 255 255 255 255 255 255 255
255 255 255 255 255 255 155 255
255 255 255 255 255 255 255 255
255 255 255 255 255 255 255 255
255 255 255 255 255 255 255 255

The 255 entry in the above tables indicates that the coefficient was
discarded.
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Comments on ‘“‘Interpolative Multiresolution
Coding of Advanced Television with
Compatible Subchannels”

T. Naveen and John W. Woods

L. InTRODUCTION

Recently, Uz ef al. [1] have analyzed the propagation of quarm-
zation noise in a pyramid (with feedback) and subband d
tion schemes. In this study cach band was independently qu.a.nu.:wd
by a scalar quantizer of equal step size. The resulting reconstruction
error spectrum indicated that in both the pyramid (without feedback)
and subband coding schemes, noise was building up in lower
frequencies (see their Fig. 6). They have indicated two possible
solutions to this problem: use a pyramid with feedback or choose
finer quantizers for the lower bands. The latter solution has been
known to the s. This solution can be explained from the
rate-distortion theoretic point of view, as given in Section II. This
solution has been implicitly provided in [2].

II. RATE ALLOCATION PROBLEM

In this section, we review the analysis given in [2](Section 1.3)
for bit allocation to subbands when PCM coding is used. Let us
consider a code rate of R bits/sample (bps), and an N sample
image source analyzed into M subbands with n, samples in mth
subband so that

M
N= ¥ fn. (1)
m=1
The distortion-rate characteristic (MSE) of a scalar quantizer for
a unit variance sample can be modeled as
o(r) =g(r)e rz0 (2)

for g(r) a slowly varying algebraic function of rate per sample r
and @ a constant no greater than 2log, 2. For simplicity, let us
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that g(r) £ g, a constant. Let a rate of r,, bps be used to
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