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EE243 Advanced Electromagnetic Theory

Lec # 20 Coupled Mode Theory (Cont. 2)

• Coupled Mode Eigenvalues and Eigenfunctions
• Modes Lock Together as Super Modes

• Leaky Waves on Structures with Radiation Loss
• Mode Crossings in ω−β diagrams: two types
• Bloch Waves (Propagation and Stop Bands)
• Floquet Theorem for Periodic Structures
• ω−β Diagrams for Periodic Structures

Reading: Haus 7.6, 8.1, (9,1-9.2 lite), Tamir 3.1.4, 
Collin 4.8-4.9, 8.1, 8.2, 8.6, 8.8, 5.7-5.8

Fixed  Slides 5, 9
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Overview
Implications and generalizations of coupled modes.
• Super modes are locked sets of  modes with new k-vectors
• Leaky modes have radiation loss, hence complex k-vectors
• Relative direction of the group and phase velocity 

determines phase or attenuation type interaction
Generalizations for Periodic Structures
• Bloch Waves (Allowed Crystal Super Modes)
• Floquet Most General Representation of a periodic field
• ω−b Diagrams for periodic structures with k-vector 

combs and intersections
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Coupled Modes as Eigenfunction Problem

• Construct a vector of mode 
amplitudes

• Rate equation can be written 
as derivative of mode vector 
equal to a coupling matrix 
M times mode vector

• Look for source free 
solutions (eigenvalues) by 
substituting an arbitrary 
exponential variation

• Determinant constrains 
arbitrary exponential 
(eigenvalues)

Use to check Kogelnik Solution in Eq. 2.6.30-31.
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Coupled Modes as Eigenfunction Problem (Cont.)

• Eigenfunctions are found by back substituting eigenvalues
• These eigenfunctions are the Super Modes and show the field 

behavior in the cross section. (It changes as ω changes)
• Homogeneous solution is sum over eigenfunctions with their 

eigenvalue z dependence plus boundary condition at z locations
• A solution driven by an imposed (forced) z variation will take on 

that z-variation with eigenfunctions added to match z transition 
conditions. (Like a circuit - forced time variation and transient.)
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Leaky Waves: Uniform Structure

• When ever modes can transfer part of their energy to radiation they 
are termed Leaky Waves and their k-vectors parallel to the 
propagation direction are complex.

• This can occur by tunneling into the high n region (Prism Coupler)
• This complex z variation can occur by giving or receiving energy

Substrate

Guide
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Prism
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Leaky Waves: Periodic Structure

• When ever modes can transfer part of their energy to 
radiation they are termed Leaky Waves and their k-
vectors parallel to the propagation direction are complex.

• A periodic geometrical variation can produce a k-vector 
that radiates.

• The radiation loss requires an associated attenuation 
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Wave Media Interaction

• Standing waves can produce periodic media modulation
– Acousto-Optical Modulator (slow moving periodic structure)

• Flowing carriers can add and remove energy 
– Traveling-wave tubes with electron beams

• Nonlinear media effects can couple modes
– Modelocking

Flowing or standing wave media
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Coupled Mode: vg and vp Same Direction

When the group and phase velocities are in the same direction
• The eigenvalues (β’s) move away from each other
• The displacement is proportional to the coupling coefficient
• The eigenfunctions (Super Modes) associated with eigenvalue (β) 

continuously change identity in passing through the crossing point

ω

β

Haus 7.6
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Coupled Mode: vg and vp Opposite Direction

When the group and phase velocities are in the opposite direction
• The eigenvalues (β’s) move toward each other and merge
• After they merge an attenuation region appears
• The region over which they merge and the level of attenuation is

proportional to the coupling coefficient

ω

βα

attenuation

Haus 7.6
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Periodic Media Complications and Fixes

• Coupled Mode Theory 
– Describes the change with distance when coupling is introduced 
– Each eigenvalue and eigenvector gives a Super Mode distribution and its β

• For a periodic structure 
– The coupling is not uniform with distance
– The fields are not uniform with distance
– A Super Mode becomes a sum over an infinite number of periodic k-vectors
– But it is possible to compare fields at z values that differ by the period P = d

z
x Exponential 

decay

Exponential 
decay
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Bloch Wave Concept and Constraint

• At each cut plane n and n+1
– Super Mode to right cn

+ and cn+1
+ 

– Super Mode to the left cn
- and cn+1

-

• Require periodic behavior e-γd between cut planes
– cn+1

+ = cn
+ e-γd

– cn+1
- = cn

- e-γd

• Integrate coupling coefficients over period (A matrix)
– Aij = integrate (Super Mode)i ∆ε (Super Mode)j

z
x Exponential 

decay

Exponential 
decay

Oscillatory

µ0ε0

µ1ε1

µ2ε2 P = d
n n+1
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Bloch Wave Constraint and Matrix

• Bloch Constraint of simple 
complex factor

• Per period change described 
by the A matrix which has 
elements similar to Ki,j

• Homogeneous Constraint 
Determinant = 0

• Constraint on γ gives waves 
allowed in periodic structure

Collin 8.2 Eq 8.19-21

( )
2

cosh

0

2211

1

1

2221

1211

1

1

2221

1211

1

11

1

AAd

c
c

eAA
AeA

c
c

AA
AA

c
c

c
c

e
c
c

n

n
d

d

n

n

n

n

n

nd

n

n

+
=

=⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡

−
−

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

+
+

+
+

−

−

+
+

+
+

+

+

+

+
−

+
+

+
+

γ

γ

γ

γ



Copyright 2006 Regents of University of California
13

EE 210 Applied EM Fall 2006, Neureuther Lecture #20 Ver 11/12/06

Relationship of A-Parameters to S-Parameters

• Could work out each term by taking ratios 
• Determinant = of A matrix is unity

Collin 4.9 Eq 4.80
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Stop Band

Bloch Wave ω−β Diagram

• Example from Collin of a coaxial line with periodic rings 
• When frequency increases through the region where the 

rings become near λ/2 in spacing 
– The group velocity drops to zero
– A pure attenuation region is encountered
– And propagation then resumes starting from a zero group velocity

Collin Fig. 8.8
ω

βd
0 π−π

αd

Pass Band
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Floquet Expansion for Fields (x,y,z)

• A periodic function 
can be expanded in 
complex Fourier 
series in z

• The common behavior 
e-γd between periodic 
cut planes can be 
factored out

Collin 8.8 Eq 8.50-52
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ω−β Diagram for a Periodic Structure

• This plot shows the ω−β behavior of each term in the 
Floquet expansion

• When any term is nearly phase matched to another term the 
interaction is enhanced and a noticeable perturbation takes 
place.

• Note that while each spatial harmonic has its own phase 
variation they each have the same group velocity.

Collin Fig. 8.8 Generalized 
ω

βd0 π−π

αd
n = 0 n = 1n = -1

Haus 8.1


