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EE243 Advanced Electromagnetic Theory

Lec # 16 Dielectric Waveguides

• Recap Solutions for Homework Set 6
• Review for the Midterm Examination
• Dispersion Equation Dielectric Slab Waveguides
• Modes in Dielectric Slab Waveguides

Reading: Jackson 8.11 and Harrington 4.7.
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Midterm Exam
• In Class Tuesday October 24th

• Covers material through Chapter 7 (Lecture 12)
• Open Book, Open Notes, Bring Calculator, Paper 

Provided
• Topics

– Green’s functions free space and use in Theorems and 
concepts with emphasis on statics

– Separation of variables in rectangular coordinates using 
N-1 and N method

– Time-Harmonic ME, planewaves, boundary conditions, 
and dispersion

Review Th, Oct 19
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Physical Effects: Wave Direction Change

• Draw concentric circles of radius kair and kmed

• Incident wave has k vector given (arrow k1)
• Find the component parallel to the surface (dotted line)
• Force the k-vector in air kair and k-vector reflected kref to have the same 

parallel component (lie on dotted line)
• Choose point on the circle to give these new k-vectors (arrows) the 

correct length for the wave equation in the media that they are in
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Plane Interface: Physical Effects

• Total Internal Reflection
– Parallel part of kmed > k0

• Brewster Angle 
– Polarization in plane of incidence reflection coefficient 

goes to zero giving 100% transmission
• Polarization dependent reflection phase change

– Converts linear to part circular polarization
– Beam energy penetration δ and spot shift D (Goos-

Hanchen effect)
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Separation of Variables: Source Strategy

• View source as being on z = f plane.
• Require Φ2 - Φ1 =D(x,y)/ε0 at z = f
• Also require at z =f 
• Multiply each of these equations by one of the composite 

eigenfunctions and integrate over x,y cross-section
• Gives two equations relating Anm and Bnm for the same nm.
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Reciprocity

Φ(x2,q1) = Φ(x1,q2)
Proof:
• Green’s Theorem
• Poisson’s equation for Φ(x2,q1) and Φ(x1,q2) causes 

volume integral to give Φ(x2,q1) - Φ(x1,q2)
• In surface integral use homogeneous boundary 

condition to replace potential with derivative and 
integrand vanishes at every point on the boundary

Conducting Object

Position 1 = x1

charge 2 = q2

charge 1 = q1

Position 2 = x2

Reciprocity for
Green’s Function in Jackson

),(),( xxGxxG ′=′

Lecture 4
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Integral Equation to Find Surface Charge

• Example: Grounded Conducting Object and ρ(x)
Φ = 0 => all of the F surface term drop out
dΦ/dn’= σsurface remains 
Since Φ is known at every point on object restrict x to be on 

the object
Gives and integral equation for the surface charge

Generally the Green’s function for free space is used
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Overview
• Source free guided wave solutions can exist on dielectric 

slabs, layers and fibers.
• The necessary conditions for their longitudinal 

propagation constant are found by representing the fields 
and matching boundary conditions on their transverse 
field to determine eigenvalues.

• The transverse behavior is exponential outside the 
dielectric and oscillatory inside the dielectric.

• The physical characteristics on the modes are quite 
similar to those in metal waveguides and include TE/TM 
classification, orthogonality, cut-off, etc. 
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Dielectric Waveguides

• Three regions
• Choose TM (or TE)
• Will have Hy, Ez and Ex (Ey, Hx, and Hz)
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Dielectric Waveguides

• Consider TM w/r z case 
• Write expression for Hy in each of three regions 

(above, in and below dielectric).
• Note: Include Kinetic boundary condition in 

expressions
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Dielectric Waveguides

• Find Ez in each of three regions
• Apply dynamic boundary conditions (four)

– Hy continuous at top and bottom of dielectric
– Ez continuous at top and bottom of dielectric
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Dielectric Waveguide: Dispersion Eq.

• Convenient within TM and TE to distinguish 
between even (coskxx) and odd sin(kyx) variations

• Results in four dispersion relationships 
– Two for TM 
– Two for TE
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Dielectric Waveguide: Physical Nature
Harrington 4.7 Special case of air on top and bottom, thickness a
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• Right hand side is a circle; Left hand side is spikes in tan 
(See H Fig 4-11)

• Odd sin(kyx) variations have no cut-off (always exist) in both 
TM and TE

• Mutiple solutions (intersections) give multiple modes
• Additional new mode about every half wavelength of 

oscillatory variation.
• Weighted by material contrast sqrt (µ1ε1-µ0ε0)
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Surface-Guided Waves

• Two regions
• Choose TM (or TE)
• Will have half of the solutions from the symmetric 

dielectric slab: TM odd and TE even of the slab
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Dielectric Waveguides: Resonance View

• Add up phase of transverse round trip = n2π
• Use the phase of the reflection coefficient to 

account for penetration of fields outside dielectric
• This phase will depend on polarization and angle 

and is thus must be found iteratively 

One round trip

x

µ0ε0

µ1ε1

µ2ε2

Polarization and angle dependent penetration distance 
given by the phase of the reflection coefficient


