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EE243 Advanced Electromagnetic Theory

Lec # 11: Plane Electromagnetic Waves

• Plane Waves in a Nonconducting Medium
• Linear and Circular Polarization
• k-space view of waves in media
• Reflection and Refraction at Plane Interfaces
• Physical Phenomena Associated with Reflection

Reading: Jackson Ch 7.1-7.5 (skip 7.6 and 7.7)
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Overview
• In a source free region for time-harmonic (e-jωt ) 

signals Maxwell’s Equations can be reduced to 
two coupled curl equations.

• These two curl equations
– Combine to produce the wave equation for E or H

• The eigenfunctions for these wave equations are plane waves 
described by propagation direction vectors called k-vectors that 
have length 2π/λ and result in wave velocity c.

– Have zero divergence and make the vectors E and H 
perpendicular to the direction of propagation.

– Make E and H vectors perpendicular to each other
– Are sufficient at material boundaries to

• require the components of the k-vector parallel to the surface 
to be the same on both sides of the boundary (Kinematic B.C.)

• Require tangential E and H continuous; normal D and B 
continuous at the boundary (Dynamic B.C.)
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Time-Harmonic Maxwell Equations
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Wave Equation: Derivation

• Take curl of curl 
E Eq.

• Sub: for curl curl

• Sub for curl B
• Use Div E = 0
• Similar Eq for B
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Wave Equation: Plane Wave Solution
• Use 3D Fourier Expansion 

type eigenfunction where the 
vector k is the propagation 
vector called the k-vector

• Differential operators 
become algebraic operators

• Wave equation gives a 
constraint on the length of the 
k-vector

• The k-vector is reciprocal to 
the space variation 
wavelength λ
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Plane Wave: Vector Properties
• Start with a vector in 3D 

and variation 3D 
• Div E = 0 => k 

perpendicular to E
• Div B = 0 => 

perpendicular to E
• Because E is perpendicular 

to k the fact that B ~ k 
cross E then implies B is 
perpendicular to E

• That is all 3 (k, B, E) are 
perpendicular to each other 
and that there are no fields 
in the direction of 
propagationOhmsZ
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Inhomogeneous Plane Waves |k|2 > ω2µε
• The k-vector can be a vector 

with complex components 
and the imaginary part can 
describe exponential 
attenuation

• The wave equation requires 
the dot product with itself to
– have a real part ω2µε 
– have the imy part 

perpendicular to the real
• Thus the direction of 

maximum attenuation must 
be perpendicular to the 
direction of propagation 

( )
02)(Im

Re

2

2
0

22

2
0

0

0

=⋅=⋅

=−=⋅

=⋅

===

+=

= ⋅

ir

ir

ir

xki

kkkky

kkkkk

kkk
c

k

kikk

eEE

λ
πωµεω

Evanescent waves that stay near 
or surface and explain 
phenomena such as tunneling 
across gaps.



Copyright 2006 Regents of University of California
8

EE 210 Applied EM Fall 2006, Neureuther Lecture #11 Ver 10/01/06

Plane-Wave: Poynting’s Theorem

• Plug in Vector E with complex numbers for 
components

• Poynting vector, stored energy is balanced
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Linear and Circular Polarization
• Choose propagation in z 

direction and let E have 
components in x and y directions
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Reflection and Refraction  at a Plane Interface

• Wave incident from below at angle i
• Generates transmitted (refracted) wave at angle r’’
• Also generates reflected wave at angle r’
Note: The z = 0 plane where the boundary conditions are 

applied is for all x values and all y values
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Plane Interface: Kinetic Boundary Conditions

• Since the z = 0 plane covers the range of the full Fourier 
representation each of the three waves must have the same 
eigenfunction variation along the boundary in x and y (i.e. 
the same kx and ky)
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Plane Interface: Dynamic Boundary Conditions
• Wave Eq = 2nd order => 2 boundary conditions
• Two independent vector orientations => 4 boundary 

conditions toal
• Choose 4  from 6 possible and express in terms of E 

– Normal D and B continuous (2)
– Tangential E and H continuous (4)
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Plane Interface: Solution

• Unknowns are the transmitted and reflected wave complex 
amplitudes in the plane of incidence and perpendicular to 
the plane of incident.

• These two vector orientations can be solved independently 
from each other

• See Jackson Page 305 for the detailed results
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Plane Interface: Physical Effects

• Refraction
– Wave direction change

• Total Internal Reflection
– Only Evanesent fields outside
– Tunneling accross a gap

• Brewster Angle
– 100% transmission

• Polarization dependent phase change
– Converts linear to part circular polarization
– Beam spot shift (Goos-Hanchen effect)
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Physical Effects: Wave Direction Change

• Draw concentric circles of radius kair and kmed

• Incident wave has k vector given (arrow k1)
• Find the component parallel to the surface (dotted line)
• Force the k-vector in air kair and k-vector reflected kref to have the same 

parallel component (lie on dotted line)
• Choose point on the circle to give these new k-vectors (arrows) the 

correct length for the wave equation in the media that they are in
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Plane Interface: Physical Effects

• Total Internal Reflection
– Parallel part of kmed > k0

• Brewster Angle 
– Polarization in plane of incidence reflection coefficient 

goes to zero giving 100% transmission
• Polarization dependent reflection phase change

– Converts linear to part circular polarization
– Beam energy penetration δ and spot shift D (Goos-

Hanchen effect)
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