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EE243 Advanced Electromagnetic Theory

Lec # 9: Maxwell Equations

• Maxwell Equations (including Faraday’s EMF)
• Vector and Scalar Potentials
• Gauge Conditions to Give Potentials Useful Properties
• Green’s Function for the Wave Equation
• Retarded Solutions
• Macroscopic Maxwell Equations Applications

Reading: Jackson Ch 6.1-6.6 (lite on 6.5 and 6.6)
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Overview
• Maxwell was able to integrate Faraday’s observations 

in to a single set of consistent equations for both statics
and dynamics and Maxwell also considered light to be 
an electromagnetic phenomena.

• Key Ideas
– Add displacement current
– Re-derive the vector and scalar potential
– Use Gauge conditions to tie down arbitrary nature
– Use Fourier representation to find the time-retarded time-

varying Green’s Function solution
– Average over molecules in 2.5 nm volume to get 

Macroscopic Maxwell Equations
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Maxwell Equations

• Maxwell put Div D into 
continuity equation

• Added term is 
displacement current

• Boundary conditions 
are same as in electro-
and magnetostatics
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Auxiliary Mathematical Potentials now Both 
Scalar and Vector

• Div B = 0 allows B to 
be represented by curl A

• Curl (E plus time 
derivative of A) = 0 
says that this quantity 
can be described by 
Gradient Φ

• Thus both A and Φ are 
required.
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Wave Equations for Auxiliary Mathematical 
Potentials A and Φ under Lorentz Gauge

• Lorentz Condition 
(Gauge) when term in 
this bracket is zero

• Potentials are still not 
unique
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Coulomb Potential and Transverse Current for 
Auxiliary Mathematical Potentials A and Φ 

under Div A = 0

• Coulomb Gauge Div A = 0
• Φ is instantaneous near field

• Longitudinal and transverse 
current

• Only transverse current radiates
• Balloon coated with charge and 

with oscillating radius does not 
radiate
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Green’s Function for the Wave Equation 
Based on Fourier Representation

• Typical Wave 
Equation

• Fourier 
Representation

• Fourier Spectrum
• Apply to both 

source distribution 
and unknown 
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Green’s Function for the Wave Equation 
Radial Behavior

• Typical Wave 
Equation

• Green’s Function
• Boundary free case 

can only depend on R
• Diff Eq. for R 

variation
• Normalized
• Outward is -kR
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Green’s Function for the Wave Equation 
Time-Retarded (for propagation)

• Put in time delta
• Fourier Transform
• τ = t – t’
• Transform back
• Use + for source genera ration
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This time retardation applies 
to the vector potential under 
both the Lorentz and 
Coulomb Gauges and to the 
scalar potential only under 
the Lorenz Gauge
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Retarded Solutions for B and E

• Apply operators to get E and B
– Jefimenko expressions

• Work out the retarded derivatives
– Heaviside-Feynman expressions
– E ~q{radial}
– B ~q{v cross R}
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Derivation of Macroscopic Equations

• Average over space and time
– Volume 2.5 nm on a side 1000 atoms
– Time longer than dielectric relaxation time 10-14 s

• Proceedure
– Microscopic equations
– Tapered support or finite support
– Free and Bound charges
– Molecular multipole moments
– Equal to a collection of point multipoles
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Macroscopic Maxwell Equations

• Same Equations
• Constitutive 

Relationships
• Propagation parameter
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