EE 210 Applied EM Fall 2006, Neureuther Lecture #05 Ver 09/10/06

EE243 Advanced Electromagnetic Theory

Lec # 5. Boundary Value Problems

* Touch up Reciprocity, Variation, Finite-Element
e Orthogonal functions

e Constant Product of Widths (Space x Spectrum)
e Initial-Final Asymptotic Behavior

« Summation of Complex Series

o Start Separation of Variables N-1 Dimensions

Reading: Jackson
2.8-2.12,3.4
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Reciprocity

Position 1 = x, Position 2 = x,

o chargel=
) o ° charge 2 = q,

Conducting Object >

B Reciprocity for
D(X,,0;) = D(X1,9) Green’s Function in Jackson

Proof: N

 Green’s Theorem G(X,x) = (X, X)

 Poisson’s equation for d(x,,q,) and ®(x,,9,) causes
volume integral to give ®(X,,q,) - ®(X;,0,)

* In surface integral use homogeneous boundary
condition to replace potential with derivative and
Integrand vanishes at every point on the boundary
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Variational Approaches Jackson 1.12
1
ITy] =§jVW'V'ﬂd3X‘de3X‘§ fyda
V \% S

* Energy like functionals are useful as physical
systems have minimal energy corresponding to
minimizing these functionals

* The above functional has
— energy stored in fields in volume
— Minus work done on sources g in volume
— Minus energy flow away across the boundary

 Look atchange v —w +0ow
— Require 5| Vvanish independent of change

— Gives Poisson’s equation source g and 9% _ ¢
on
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Finite Element Methods
Jackson 2.12 2D Example

[[#v?y +ggldxdy =0 [[V4-Vy - ggldxdy =0

o Here ¢(X,y) Is a test function that is zero on boundary
(Dirichlet)

« This boundary condition makes the integrals equal

* Choose ¢;;(x,y) linear on rectangle or triangle 1,j and zero
elsewhere and express in 4 or 3 node values N,

« Represent solution: Cover domain (X, y)=~ kzl'ﬂk,l%,l (X, y)
 Put this representation into the right hand integral and let ¢
= ¢;(X,y)

* Repeat for each rectangle or triangle and get one equation
that is sparse in node values

e Solve for node values
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Orthonormal Functions and Expansions

b Jackson 2.8
« Ortohnormal IUn(f)Um(f)df =0
functions ? '
e Approx. Sum f(x) & Zanun(f)
e Mean Square Min. b n=1
. \
o Coefficient M, :J-l f (&) _ZanUn(f) 2 de
e Convergs to the " =

mean at b
discontinuities a, = jU:(f) f(5)dS
« Completeness |
e Mean Square MS = nzc;aﬁ
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Fourier Series Example

Jackson 2.8 pp 68

e |Interval —a/2 to a/2

 Normalized sqgrt(2)/a sin(2rtmx/a) and
cos(2rmx/a) plus constant

* f(X) = 2/a integral f(x) times sin or cos
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Fourier Integral Example
Jackson 1.12 pp. 69

f(X) = % j A(k)e™ dk

A(K) = f (x)e "dx

1 j”
Jor ?,
 Infinite domain => continuous distribution
o A(K) = spectral distribution or spectrum
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Constant Space Bandwidth Product

Horse Sense to check Answers Jackson pp. 324

e Let AX = rms deviation f(x) = sqrt ave|f(x)|?
e Let Ak =rms deviation A(k)= sqrt ave|A(k)[?
e Then AXAK > or eq. %%

Examples:

 pulse width times bandwidth < or eqg. K

o laser beam size times divergence < or eq. K
 Size source times number of eigenfunctions

8
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Initial-Final Asymptotic Behavior

Horse Sense to check Answers
SF(s)|._,, = f(t)t%+ MG
_SF (S)-S—)O — f (t)t—)oo XV — kv+]_

« Laplace Transforms have the above asymptotic behaviors

« Fourier Transforms and Fourier Series in space have
similar asymptotic behaviors.

Examples:

 FT or FSstep (v =0) has spectrum 1/k or 1/n

e FT of FS linear function (v = 1) has spectrum 1/k? or 1/n?
 FT or FS delta function is constant
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Edge and Corner Conditions

Horse Sense to check Answers Jackson 2.11 3.4

e Derived from separation of variables In
cylindrical and spherical coordinates

» Edge with open angle  in rad. => p™F-1
— 90 degree open p= n/2 => p(0)
— 270 degree open pB= 3n/2 => p(-0-33)
— 360 degree open p=2m => p(0-3)

 Conical hole or sharp point r-1) data Fig. 3.6
— Low fields in holes
—Smalltipsv=02t00.1 V=[2In(

2 o

72'_
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Summation of Complex Series

Horse Sense to check Answers Jackson 2.10

z =complex__number

S 2" =1/(1-7)

Z— — —In(l-2)

» Fourier Transforms/Series, multiple reflections In

electrodynamics, etc. lead to many complex
expansions that can be summed up In closed form

when estimating values.
 Becarefulnearz=1
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Separation of Variables: Geometry

Jackson 2.9
y
z="1 H
plane\ D ——
; ....... - a' ............ > X
C.. i Point Source
A"'Z (d,e,f)

* Interior of a grounded conducting box bounded by
planesof x=0,y=0,z=0,x=a,y=b,andz=c

« Point charge q at (d,e,f)

Vi =~ s(x—d)s(y—e)5(z— 1)

&y
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Separation of Variables: Product

82(1) 82(1) aZcD Jackson 2.9
—+—+—=0
OX oy 0z

D(X,y,2) = X(X)Y(y)Z(z)
1 azx+ 1 aZY 1 azz
X (X) ox>  Y(y) oy’ Z(z) 0z°

* Method for solving differential equations by
forming products that depend on one variable only
and summing over all possible combinations of

functions.

« Key Argument: Each term contains a function of
one variable only and to hold for arbitrary values
of all three variables each term must be constant

13
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Separation of Variables: Eigenvalues

1 o°X _ , = Two oscillator (sin) and one

X (x) ox? “ exponentially damped (sinh)
1 0% __p . Boundqry cgnditic_)n

Y(y) oy? constraint gives discrete

values of o, = nm/a and B, =

1 o’z
Z(2) 572 =7 mmt/Db.
o+ B = * Then y,, picks up the slack
to satistf PDE

- : « Two BC In z give Z(z)
7/nm — \/an +ﬂm . ,
A SINh(y,,2) + A, COSN(Ym2)
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Separation of Variables: Representation
Jackson 2.9

D%, y,2) = 3 Ay sina,X)sin(,y)sinh(y,,2)

n,m=1

(%, y,2) = 3 B,y sin(a,X)sin(B,y)sinh(y,, (¢ - 2))

n,m=1

e Sum Is over eigenvalues in N-1 dimensions

« Note that the boundary conditions for x=0, x = a
and for y=0 and y= b are met by sin behavior

« Note that the boundary conditionsatz=0and z =
¢ have already been applied in sinh behavior.
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Separation of Variables: Source Strategy
y Jackson 2.9

C .......

oint Source
'..z (d,e,f)

* View source as being on z = f plane.

e Require @, - ®, =D(x,y)/e,atz="1

e Alsorequireatz=f (E,—E,)-A=0qreace (X, ¥)/ &,

« Multiply each of these equations by one of the composite
eigenfunctions and integrate over X,y cross-section

 Gives two equations relating A, and B, for the same nm.
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Separation of Variables: Source Results
Avm SINN(Y ) + By sinh(y,, (€ - 1)) =0

An COSh(j/nmf)_B COSh(ynm(C_f)):J

__Ha(x y)sm( - jsm(znyjdxdy

d

(%, y) =~ 5(x—d)S(y —e)

&y Jackson 3.12

ql67 . (Zﬂdj ( nej
O = sin sin
gyab a a

e The delta function source makes the source
Integral and expansion trivial
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Separation of Variables: Final Result

D%, y,2) = 3 Ay, sin(a, X)sin(B, y)sinh(7,.2)

n,m=1

(%, y,2) = 3 By sin(a,X)sin(B, y)sinh(7,, (¢ - 2)

n,m=1

Jackson 3.12
» Solve for A, and B, ., and plug in
 Both proportional to o,
 Also involve ratios of sinh and cosh
e See 3.168 pp 129
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