EE 210 Applied EM Fall 2006, Neureuther Lecture #04 Ver 09/03/06

EE243 Advanced Electromagnetic Theory

Lec #4: Electrostatics (Green’s Thm.),

« Unigueness

e Equivalent Sources

 Zero fields Outside Region
* Reciprocity

Reading: Jackson
1.8-1.10, 2.7
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Integral Representation

()= | = [ p(X)G(X, X)dX +417,f[ (X, _')@—CD(X)éG(;’,T)}da
G(X,X) =— 2+ F(X,X)
| X =X
V"?G(X,X") =-4r5(X -X') V'2F(X,X') =0
G(R,X) = —
| X=X
) 11 o s, 1 ]
0= o [P0 X+47rﬂ|x—x'|5n"®( )mﬂ—'dd

Copyright 2006 Regents of University of California



EE 210 Applied EM Fall 2006, Neureuther Lecture #04 Ver 09/03/06

Integral Representation: Boundary Conditions
Jackson 1.10

D(X) =

1 VARV . (_ K,) '
yo 0jp(x )G (X, X')d *x +47[ﬂ6(x x)— O (X') g }da

« 2nd order differential equations in general require
two Boundary conditions

 [Integral representation has both ® and its normal
derivative on the boundary

« But the integral representation also has both G and
Its normal derivative on the boundary

e Since @ and G can represent different physical
problems they can take on different boundary
conditions
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Dirichlet Boundary Conditions G =0

1 jp(x')c;(r(,x')d3x'+4i§[e(>—<, 22 o) B _')}

Are, y Ty

D(X) =

e G =0=>0nly surface term requiring ® remains

« Example Potential on Sphere known and p(x) =0 In
volume Jackson 2.6-2.7

« Green’s Function for image charge In sphere
G(X,X') = -

X —X'| 2

— Evaluate normal derivative of G

cD(x)——ch(a 0, ¢)( alx’ —a)

3/2
X? +a’ — 2axcos y |
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Dirichlet Boundary Conditions G =0

D(X) = (X,X") }da’

jp(x )G (X, X')d *x +4i§{e(>—<, X~ o

4re, ax:

o G =0 => first surface term zerg
o Example ® =0 Grounded Sphere and p(x) in volume

e Green’s Function for image charge in sphere

G(RX)=—r @

» Note: a charge distribution exists on the sphere but no
knowledge about it Is needed _

1 a ,
= [ p(x) - |4

| X=X a
X'| X ——X'| 5
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Neuman Boundary Condition: dG/dn’ = O
jp(x NG(X,X')d X +4i§[e(>—<,x')§—cp( ) )}da'

4rey a:

D(X) =

Neuman dG/dn’ = 0 => Only d®/dn’ = 61, F€EMAINS
It is hard to find examples of this Green’s function

If In addition ... = 0, all of the surface terms drop
out

Mixed Boundary Conditions

— Location: Different BC can be used at different locations on
surface and surface integral will still drop out
oD

— May also generalize for linear combination  o® +,B—
on
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Integral Equation

Volume integration points
Surface Charge Patches

% p(X)

o

I Observation Point
—  moves to surface

Conducting Object >
"\ Boundary Integration point

N surface charge patches or unknowns

N observations points on surface where the potential is known
Each observation gives a different weighted sum of the charge
patch contributions

N constraints on N unknowns => solve for N unknown surface

patch charges 7
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Integral Equation to Find Surface Charge

D(X) =

L[ 08N+ ] 6(xR) T 0) B

4re, TS
e Example: Grounded Conducting Object and p(x)
® = 0 => all of the F surface term drop out

dd/dN’= o, FEMAINS
Since @ is known at every point on object restrict x to be on
the object

Gives and integral equation for the surface charge

oz{ 1 p(x')c;(x,x')d3x'+41ﬂe(x,x')gﬂda}

Are T
ov S X _on_object

Generally the Green’s function for free space is used

1 - o 1 1 oD |, ,
472'6‘0 | | TS | X=X | on X _on_object

v 8
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Equivalence Theorem
© o
Surface Charge Patches

Surface Potential \ \

————

° X’ = Boundary Integration Point
®(x) =0 ~ x = Observation Point

°°o p(X*)

When the observation point in the integral representation moves
outside of the solution region the value of the potential is
Identically zero!

 This means that knowledge of the potential and its derivative
normal to the boundary are sufficient equivalent sources to wall
off the world outside the solution region!

 This implies that it does not matter what is outside of the
solution volume and in fact it can be changed to simplify the
solution and not affect the answer!

o This result is true for any Green’s function!
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Uniqueness Theorem

The Electrostatic Solution Is unique
Proof:
« Assume two, take difference and plug in Green’s 1st

|dentity for both ¢ and

Difference Is source free =>volume Laplacian
Integral = 0 (no sources)

Difference is 0 on boundary => surface integral Is
Zero

Volume integral of gradient product is squared
gradient and must integrate to zero => integrand
must be zero everywhere in solution region.

Hence the function (except for a constant off-set
voltage) must be identical

10
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Reciprocity

Position 1 = x, Position 2 = x,
o chargel=q, o
charge 2 = q,

Conducting Object >

D(X,,0;) = D(X4,05)
Proof:
e Green’s Theorem

 Poisson’s equation for d(x,,q,) and ®(x,,9,) causes
volume integral to give ®(X,,q,) - ®(X;,0,)

* In surface integral use homogeneous boundary
condition to replace potential with derivative and
Integrand vanishes at every point on the boundary
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Integral Equation Numerical Solution Method

0= [ o) dxs i f| Ly
472'50\-/ |X—X| 472'5 |X_X |5ﬂ X_on_object

« Expand surface charge as a function of position on
surface as a sum of N linearly independent functions
each with an unknown amplitude.

— Example: finite basis functions or orthogonal functions

* For a given position on object evaluate the integral to
get one constraint on the weighted sum of the
unknown coefficients

* Repeat for N separate positions

e Solve the N constraints for the N unknowns
coefficients using Matrix methods

12
Copyright 2006 Regents of University of California



