EE 210 Applied EM Fall 2006, Neureuther Lecture #03 Ver 09/03/06

EE243 Advanced Electromagnetic Theory
Lec #3: Electrostatics (Apps., Form),

 Electrostatic Boundary Conditions

* Energy, Force and Capacitance
 Electrostatic Boundary Conditions on @

* Image Solutions Example Green’s Functions
* Integral Formulation

Reading: Jackson
1.11, 2.1-2.5,1.7-1.10
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Electrostatic Boundary Conditions

e DivD=p
. (6D, SO
(E,—E)-n= 5n2 - ml)zalgo
D terminates on surface charge on a conductor

e How about for ®?
— Jackson 1.6 evaluates dipole layer D(Xx)

(D,-D,)-n=D/g,

— Thus @ Is continuous unless there is a surface dipole
layer
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Energy

Jackson 1.11

 Electrostatic potential is potential energy of a
charge

e Add acharge to m-1 charges = m-1 terms

* Repeat to add more charges (leaving out self-
Interactions) to get N charges

« Put in symmetric form (un-nest do loops to get 2
of regular double sum)

W = % j o(X)D(X)d X
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Energy (Cont.)
= % j o(X)D(X)d %

Use Poisson’s Equation
Integrate by parts
Rewrite as E field

W—“SO

j[v ®(X)]D(X)d x_—j|vq>(x)| d3x =22 j|§(i) 2 d°x

Physical interpretation: The electrostatic energy is
stored in space as (1/2)DE and there is stored energy
any time that the electric field is non-zero.
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Force

« Calculated from change in energy for a small
virtual displacement AW = F AxX.

« Force per unit area Aa due to surface charge

e VVolume AaAXx

2

AW = -2 AaAx
2¢,

e Qutward force per unit area

2
O

F=—v
2¢,
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Capacitance

 Capacitance is defined as the charge per unit
voltage when all other conductors are grounded

« Mutual capacitance is charge per unit voltage
difference when a pair have equal and opposite
charge and all other conductors are grounded

 Potential Is sum over charges

« Potential Energy found by adding new potential to
m-1 => half double sum (1/2)C;;V;V;
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MethOd of Images Jackson 2.1-2.4

» Under favorable (and rare) conditions inferred
from a geometry a small number of external
charges can simulate the required boundary
conditions.

« Examples for Dirichlet (G = 0 on boundary)
— Charge above a conducting plane
» Charge -q at position -y
— Charge in a 360/n wedge

— Charge outside a conducting sphere
e Charge -aQly aty’= a?ly
— Charge inside a spherical hole in a conductor

« Examples of Neumann = Are there any?
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Conducting Sphere in a Uniform E field

+aQ/R  -aQ/R Jackson 2.5
Q r -Q
0
0 0 o> V4
R R
@R “FR

Consider two charges (to create uniform field in
limit R => infinity and Q/R? constant)
—-Qaty=Rand+Qaty=-R

Add images to make G =0

— +aQ/R at +a?/R and —aQ/R at —a?/R

Potential is 4 terms

Assume R >> a; use 1/(1+x)Y2 approx. 1-X

Take limit R => infinity and Q/R? constant :
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Conducting Sphere - Uniform E field (Cont.)

Potential 93
O =—-E,(r——)cosd
r

Physically interpret as dipole (charge times separation)

2
D:Qa2a
R

D is 3D times volume and is oriented
directly opposite to the applied field

= 4rg,Eya° = 3¢,E, -Volume

Surface charge density (from D normal) is 3D
5D

O surface — —€0 E |r:a: 3‘90 EO cosé

Copyright 2006 Regents of University of California



EE 210 Applied EM Fall 2006, Neureuther Lecture #03 Ver 09/03/06

Green’s Theorem and Integral

Green’s 2" |dentity (Theorem)
2. 2 3v 5_‘//_ @
J@viy o x—ﬂqﬁ oy
Use ¢ = @ and Poisson’s Equation for F
Use v = G any solution to Poisson’s Equation for one point

charge in the internal region and any boundary conditions on dV

_ X _ _
V’Zq)(x,x):—pg( ) V¥ (X,X) =-475(X -X')
0

1

D(X) =
%) Are,

U | I R & O 1IN
Vjp(x)e(x,x)ol x+4ﬂﬂ6(x,x)m—®(x) pov }da
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Common Case: Integral Representation with
the Free Space Green’s Function

For a unit charge in free space the potential is proportional to

D(X) =

jp(x) dx'+1§

7[0\/ |_ _’| 472'

Need to know:

1) Charge distribution in interior

2) The potential on the boundary

3) The derivative of the potential normal to the boundary

on the boundary (surface charge)
11
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Example Green’s Function Application

O o

Surface Charge Patches ~ “o_ P(X’) o x = Observation Point

Surface Potential \ \

————

X’ = Boundary Integration Point

s 1 i{l 5@_(13(?,) 5(_1_’ }da,
7 SLIX |

O(x) =7 -
—X"| o’ on' | X—X

jp(x)

”ov

« QObservation point is in solution region
 Surface Integration points are on boundary
* Volume integration is over solution region
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