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Solution to Homework Assignment #7 
Problem 1: pn Diode Charge Control Model
Given: junction area A = 100 m2; minority-carrier lifetimes (n = 10-6 s (p side) and (p = 10-7 s (n side); T = 300K.  

[image: image31.png]n or p (log scale)

n

1018;
1016
1014

1012
104

101, Pn

-X X




Since the minority carrier concentrations (np and pn) are enhanced within the quasi-neutral regions, the diode is forward biased.  The majority carrier concentrations (pp and nn) are not significantly enhanced, however, so low-level injection conditions prevail.  
a) Since low-level injection conditions prevail, the “Law of the Junction” holds: within the depletion region and at the edges of the depletion region, np=ni2 ( exp{qVA/kT}.  
np and pn each are enhanced by a factor 1010 at the edges of the depletion region, 
so 1010 = exp{qVA/kT} ( VA = (kT/q) ( ln(1010) = 10 × (kT/q) ( ln(10) = 10 × (60 mV) = 0.6 V.

b) pp = NA = 1016 cm-3 and nn = ND = 1018 cm-3
c) np(-xp) = np(-xp) – np0(-xp) = 1014 – 104 ( 1014 cm-3.  pn(xn) = pn(xn) – pn0(xn) = 1012 – 102 ( 1012 cm-3
The majority carrier concentrations (pp and nn) are not significantly enhanced within the quasi-neutral regions, so low-level injection conditions prevail.  

d) From Lecture 4, Slide 16 the electron mobility for NA =1016 cm-3 is n =1200 cm2/V(s and the hole mobility for ND =1018 cm-3 is p =150 cm2/V(s. 

The electron diffusion constant Dn= n( (kT/q)=1200×0.026=31.2 cm2/s.

The hole diffusion constant, Dp= p( (kT/q)=150×0.026=3.9 cm2/s.
The electron minority carrier diffusion length
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And the hole minority carrier diffusion length
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e) Excess minority carrier charge is stored within the quasi-neutral regions:
QP = qApn(xn) Lp = 1.6×10-19×(100×10-8)×1012× 6.24×10-4 = 9.98×10-17 C    (624 holes)
QN = (qAnp(-xp) Ln = (1.6×10-19×(100×10-8)×1014× 5.5×10-3 = 8.8×10-14 C  (550,000 electrons)
f) The diode current is found using the charge control model:

Ip(xn) = QP/(p= 9.98×10-17/10-7 = 9.98×10-10 A

In(-xp) = (QN/(n = 8.8×10-14/10-6 = 8.8×10-8 A
I = Ip(xn) + In(-xp) = 8.9×10-8 A 

The current is dominated by electron injection from the more heavily doped n side into the p side.
Problem 2: pn Junction Small-Signal Model
a) From Problem 1, IDC= 8.9×10-8 A. The small-signal resistance R = (kT/q)/ IDC=0.026/8.9×10-8 =2.9×105 . 
Since the n-type side is degenerately doped (ND = 1018 cm-3), we should use the equation on Slide 20 of Lecture 3 to find the reduction in band gap energy on the n side: 
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The built-in potential is then
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The depletion width 
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Depletion capacitance 
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14

5

1010010

5.1510 

1.9410

s

j

A

CF

W

e

--

-

-

´´

===´

´


Diffusion capacitance 
[image: image8.emf]
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Total capacitance C=Cj+ CD = 0.39×10-11 F.
A schematic of the small-signal model is shown below.
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b) Under reverse bias, the stored minority carrier charge within the quasi-neutral regions is negligible and so the depletion capacitance (CJ) is the dominant component of small-signal capacitance.  From  Lecture 13 Slide 14, 
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The plot of 1/C2 vs. VA is shown below. 
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Extrapolating to zero, the x-intercept occurs at VA = Vbi = 0.902 V. 
Problem 3: Transient Response of a pn Junction
a) From Lecture 13 Slide 20 the storage delay time is
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b) Assuming that the diode turns on from i = 0 (QN = 0 and QP = 0) at 2 μs we can adapt the equation from Lecture 14 Slide 3 to obtain 
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where t' = t ( 2 μs.

Problem 4: Photodiode
a) hole diffusion equation within the quasi-neutral n-type region is
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In steady state (Δpn/(t = 0.  
Far away from the junction (x ( ∞) in the quasi-neutral region(2Δpn/(x2 = 0.  Therefore

[image: image16.emf]0= _M-'-GL = Apn(x —> ) = GLTp

T,









0

=-

D

p

n

(

x

®¥

)

t

p

+

G

L

Þ D

p

n

(

x

®¥

)

=

G

L

t

p


b) Under steady state conditions, the hole diffusion equation within the quasi-neutral n-type region is
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for which the general solution is
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where x' is defined to be 0 at the depletion region edge on the n side (ref. Lecture 10 Slide 12).
Assuming low-level injection so that the Law of the Junction (ref. Slide 8 of Lecture 10) holds, the boundary conditions are
 
[image: image19.emf]2

n. (qVA )
Ap,(x'=0)=—"J[e 7 -1]
P, ( ) N

D

Ap,(x'—=2)=G,T,









D

p

n

(

x

'

=

0)

=

n

i

2

N

D

[

e

(

qV

A

kT

)

-

1]

D

p

n

(

x

'

®¥

)

=

G

L

t

p


Because exp(x'/LP) → ∞ as x'→ ∞, the only way the second boundary condition can be satisfied is for A2 to be zero. 
With A2 = 0, the first boundary condition yields
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The hole diffusion current density is then:
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Similarly, under steady state conditions the electron diffusion equation within the quasi-neutral p-type region is 
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for which the general solution is
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where x'' is defined to be 0 at the depletion region edge on the p side and increases with distance into the quasi-neutral p-type region, i.e. it is in the negative x direction (ref. Lecture 10 Slide 12). 
Again assuming low-level injection, the boundary conditions are 
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Following the same reasoning as for pn above, we obtain 
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The electron diffusion current density is then:
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The total diode current I = AJ, where
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(Note that there is a minus sign in front of Jn(x'') because x'' is in the negative x direction.)

[image: image28.wmf](

)

(

)

(

)

n

p

L

kT

qV

n

n

n

p

p

p

L

kT

qV

A

n

n

D

p

p

i

L

L

qAG

e

I

L

D

L

D

qAG

e

N

L

D

N

L

D

qAn

I

A

A

+

-

-

=

ú

ú

û

ù

ê

ê

ë

é

+

-

-

÷

÷

ø

ö

ç

ç

è

æ

+

=

Þ

1

1

/

0

/

2

t

t


(Note that Dpp = Lp2 and Dnn = Ln2.)
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c) The diode current is given by the ideal diode equation with an additional negative term due to illumination when GL ≠0, i.e. the ideal I-V curve is shifted down by an amount equal to IL.  
Since IL ( GL, the shift downward increases proportionately with GL as shown in the plot below.
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