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Solution to Homework Assignment #3 
Problem 1: Non-Uniformly Doped Semiconductor
a) Equilibrium conditions do prevail because the Fermi level is invariant with position throughout the semiconductor sample.

b) The electrostatic potential V = (Eref ( Ec)/q where Eref is a constant reference energy level.  Therefore, wherever Ec slopes downward V slopes upward, and vice versa.
c) The electric field is related to the electrostatic potential: E = (dV/dx = (1/q)dEc/dx.  Therefore, the electric field follows the derivative of the conduction band edge energy.
d) The carrier pictured is a hole in the valence band.  Its potential energy (PE) corresponds to the position of the valence band edge energy, and its kinetic energy (KE) corresponds to the difference between its energy and the valence band edge energy.  Remember that hole energy increases in the downward direction on an energy band diagram.
e) The electron and hole concentrations depend exponentially on EF  ( Ei: 
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f) Since Jn,drift (x) = qμnn(x)E(x), the shape of Jn,drift (x) can be deduced from the product of E(x) sketched in part (c) and n(x) sketched in part (e).  Under equilibrium conditions, the total electron current density  Jn = Jn,drift + Jn,diff  = 0 so Jn,diff  =  (Jn,drift.   In words, Jn,diff  varies in the opposite direction to Jn,drift.
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Problem 2: Generation and Recombination of Carriers
The general Recombination-Generation equation is given by
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Similarly, for p-type materials, under low level injection condition, p0 >> ni,n0,Δp and  
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Problem 3: Continuity Equation
(a) Excess carriers are generated at the two ends of the Si bar.  Due to the concentration gradient, carriers diffuse toward the center of the bar.  Since pn > ni2 there will be net recombination wherever there are excess carriers, so that the carrier concentrations will be reduced (exponentially) with increasing distance away from either end of the Si bar.  A qualitative sketch is shown below:
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(b) Yes, low level injection conditions prevail inside the illuminated bar because the maximum value of excess carrier concentration is 10-3ND which is much less than the equilibrium concentration of majority carriers, i.e. n = n0 + n ( n0
(c) The differential equation to be solved under steady state conditions with no light (GL = 0) inside the bar is
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, where Dp is the diffusion coefficient.
(d) The general solution to this differential equation is
pn(x) =·e-(x/Lp) +·e(x/Lp), where 
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 is the diffusion length.
The boundary conditions are pn(0) = ND and pn(L) = ND
(e) Assuming that the electric field is small so that the hole drift current density is negligible compared to the hole diffusion current density, i.e. Jp = Jp,diff:
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Problem 4: Quasi-Fermi Levels
a) Equilibrium electron concentration is n0 = ND = 1015 cm-3 ; equilibrium hole concentration is p0 = ni2/n = 105 cm-3 
(EF ( Ei) = kT·ln(n/ni) = 5kT·ln(10) = 5×60 meV ( EF is 0.30 eV above the intrinsic Fermi level. 
b) 
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so n = n0 + n ( n0 (low level injection condition).
Since the electron concentration is not significantly affected, the electron quasi-Fermi level is not changed from the equilibrium Fermi level, i.e. FN is located 0.30 eV above the intrinsic Fermi level.
The hole concentration is significantly affected (since p = p0 + p ( p) so the hole quasi-Fermi level is shifted significantly away from the equilibrium Fermi level: 
Ei ( FP = kT·ln(p/ni) = 2kT·ln(10) = 2×60 meV ( FP is 0.12 eV below the intrinsic Fermi level.
c) 
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 so n = n0 + n ( n and p = p0 + p ( p (high level injection condition)
FN ( Ei = kT·ln(n/ni) = 8kT·ln(10) = 8×60 meV ( FN is 0.48 eV above the intrinsic Fermi level.
Ei ( FP = kT·ln (p/ni) = 8kT·ln(10) = 8×60 meV ( FP is 0.48 eV below the intrinsic Fermi level.
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