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For the above system, the root locus is shown for 4 different controller/plant combinations,
D1(5)G1(s), .-, D4(s)G4(s). (Note: the root locus shows open-loop pole locations for D(s)G(s),
and closed-loop poles for #1%")'
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[4 pts] a) For each set of open-loop poles and zeros given above, choose the best corresponding
open-loop Bode plot W,X,Y, or Z from the next page:

(i) D1(s)G1(s): Bode Plot
(ii) D2(s)Ga(s): Bode plot __"
o
(iii) D3(s)G3(s): Bode plot i S ek 4 D3 63 g

(iv) Dy(s)Ga(s): Bode Plot ]& (€ N3 <}' W oy —> ;%00
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Problem 1, cont.
The open-loop Bode plots for 4 different controller /plant combinations, D, (8)G1(s), ..., Da(5)Gy(s)
are shown below.
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[8 pts] b) For each Bode plot, estimate the phase and gain margin:
o

(i) Bode plot W: phase margin (degrees) atw= Z&Q
Bode plot W: gain margin S dBatw= O

(ii) Bode plot X: phase margin ’69 (degrees)  at w :( o
Bode plot X: gain margin 1= dBatw=

L
(iii) Bode plot Y: phase margin 3) (degrees) atw = %& \
Bode plot Y: gain margin I_O_ dB at w = ¢
or 1o =T (
(iv) Bode plot Z: phase margin YO (degrees),  at w=
Bode plot Z: gain margin dB at w = O~




Problem 1, cont.

s
) For each closed loop controller/plant with root locus as given in part a), choose the best corre-

sponding closed-loop step response (A-D) o B
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(iv) D4(s)G4(s): step response / 1
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Problem 2 (12 pts) key
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You are given the open loop plant G (@) = sTFi7ste0- Lhe system is to be controlled using a lag
controller. with D(s) = 10,

Given: the roots of s® + 17s% + 160s + 1000 ~ (s + 10.7)(s +3.11 + 9.15)(s + 3.11 — 9.13’,')

[8 pts] a) Sketch the positive root locus as a varies, noting asymptote intersection point and
angle of departure.

[4 pts] b)
(i) approximate asymptote intersection point 5 =
(ii) approximate angle of departure for the poles: ()7 f_[_
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Problem 3 (8 pts) R C
-

Consider the following circuit for a lag compensator: r__/\/\/\’__l
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(4 pts] a) Find the transfer function %‘-3 ) \———,
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[4 pts]b) Suppose the desired behaviour of this circuit is that the (asymptotic) phase response
is —90° between 100rad/s and 1000rad/s. At every other frequency the phase response should be
greater than —90°. If C = 1uF, what are the resistor values, B; and Ry?
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Problem 4 (16 pts)
You are given the following plant
. 0 20 |5
x—Ax+BuL—[0 0}x+[0 1Ju(t), y=M41x x(t—O)—[S}

[2 pts] a) Determine if the system is controllable and observable.
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[4 pts] b) Find feedback gains K = 0k such that with contrf§l u = K (r — x), the con-
2
troller has closed loop poles at -2 and -4. ' £
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[2 pts] c) Draw a block diagram of the controlled system using integrgors, summing junctions,

and scaling functions. (Every signal should be a scalar, no vectors.)
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Prdblem 4, cont k 2}9 .

You are given the following plant
. 01 0 _ |5
x—A1x+Blu—[0 0]x+[1]u(t), y=[41]x x(t—())—[3]

[2 pts] d) Determine if the system {A;, By, C,} is controllable and observable.
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ind feedback gains K = [klkzl such that with control © = K(r — x), the controller
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[2 pts] f) Draw a block diagram of the controlled system using integrators, summing junctions,
and scaling functions. (Every signal should be a scalar, no vectors.)




Problem 5 (11 pts) ' ‘ key )

[3 pts] a) Given the following system:
X = Ax + Bu y=Cx
The state is transformed by a non-singular P such that X = Px. Thus % = Ax+Buand y = Cx.
_ Find A B C'in terms of 4, B,C, P: X =P =F"Px
‘;_%ii; X = Ar'y +Bu 2
Fu=x <pAf % +C
B
;(: [:g _61Jx+[?}u(t), y=[3 -1 x gf:EE")?
\ =

Find the transformation P and A such that A = P—
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[4 pts] b) You are given the following system:
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Problem 6 (16 pts) ' : )

The simplified dynamics of a magnetically suspended steel ball are given t;z:

w? Qo

my=mg—-cy—2 [

y is the position of the ball; u is the current through the coil (in amps); c is a constant that
describes the magnetic force between the coil and the ball. The system is linearized at equilibrium
position yo with equilibrium input u,:

Yy =1yo+dy U= U + ou
Ue = Yo Tg

The linearized state space eqf1ations are: 23 - q_ m, Cﬁ
3B Y lvele T
= [280 (1)] [2] + [—go bu U= l(,«} —H(zg
p
wett o) L
#£2I<, kl 9, 'J

1 pts] (a) What are the units of c? Assume that all other quantities are SI standard (kilograms,
meters, amps, etc). MWM . ‘ﬁ\z&_
Cm»\P
[4 pts] (b) We want to build a regulator to keep the ball at yo. We will design a state feedback
scheme, §u = — Kz, so that the poles of the linearized system are at s = —20,-12. Find K.

K=[ ] A-BK:[’SW;D}‘[’Z*"‘&;(

=
I

S

[3 pts] (c) Assume that you can directly access z; and . You build your regulator as described
above, and it successfully levitates the ball. You decide to try levitating four steel balls We
time. Now m is four times bigger; everything else stays the same. Is your linearized  pystem still
stable? Will the steel balls be stable at yo? Why or why not?
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[4 pts] (d) Return to the one-ball problem. Assuming that the only accessible output of the
plant is y, you will need an observer in order to implement state feedback. Draw a block diagram
of your regulator system. Use one block labelled “Plant”, with input u and output y; one block
labelled “Observer”, with output £; and #2 (you decide what the input should be); static gains;
and addition junctions. Every signal should be scalar (no vectors). Label as many signals as you
can. (Note that you’re not being asked to design the observer gain).

[2 pts] (e) What are some sensible values for the poles of the observer?

P ey OO

[2 pts] (f) Does using an observer introduce any new problems if you try to levitate four balls,

as in (c)? G.‘ G@
hoed e /A) QJC/D'
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Problem 7. (13 pts) k

You are given a continuous time plan{t described by the following state equation.

x = Ax + Bu Lo > __,r-’——_j,

o)

The system is driven with a D/A converter such that u(t) = uln] for nT < t < nT +T. (That

is, the input is held constant, by a zero-order hold equivalent.) Every T seconds the state of the
system is measured with an A/D converter, that is x[n] = x(nT).

Recall that the solution for the continuous time system is given by:

x(t) = eAltox(z,) + / t M=) Bu(r)dr. (1)

[3 pts] a) For the zero input response, (x(t = 0) = 20, (1) =Q] )([:2]'1 GXD]# Hb( D] \

Find:(in terms of A and x, .
x[0] =: (th! B eAO'_O) = Gl) = GHuWL) T Hub)
= el LB sG]+ Hu D |
xfn] = ATy, = (A uts) K wtlHI

[3 pts] b) For the zero state response, (x(t = Uj=87 .= T

Find:(in terms of A, B, u ! E L AT (A= :
E T B (R Gl W TS Le e Bul]
«[1] = A@Buo) n-d ) 1 2

3 pts] ¢) Consider the CT system & = —z 4+ u. With u(t) as shown, sketch z(t) for 0 < ¢ < 6sec

with initial condition z(0) = 0. ([“_ Q‘,:S)r-?_ Q‘— Q-—l)+1‘_e _) 5—&(5}7— ___X(J),} MO)
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d) Let T = lsec. For the CT system & = —z +u, 2o = 0, with zero-order hold on input, determine
the value of x at following steps (Answers may be left in terms of e.) Consider u[0] = 1,u[l] = -1
etc.
&/ =: O
x[1] = -

x2] = |l-¢% _.Q_(I-Q__]) -
x{3{=: Q= () 42 (-¢ ')
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Problem 8 (8 pts)

You are given the following plant

oo [2 P[] g memne2]

The LQR method is used to find the linear control v = —Kz which minimizes the cost J =
f0°°(:nTQx + uT Ru)dt, where Q and R are positive semi-definite. Four responses of the closed-loop
system A,B,C,D are shown below for different choices of @, R. Match the plots with @ R weights
below.
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