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Lab 3

I. Objective 

:  Model-based Position Control of a Cart 

 The goal of this lab is to help understand the methodology to design a controller using the given 
plant dynamics. Specifically, we would do position control of a cart by developing various controllers and 
then comparing their performances. 

II. Equipment 

• Cart system (no attachments) and power supply. 

III. Theory 

1. Plant Dynamics 

Since the plant here, a motor with a cart, is the same as Lab 2, we just provide a summary of its 
dynamics below.  Please refer to Lab 2 for the derivation. 

 �𝑚𝑐𝑟2𝑅𝑚 + 𝑅𝑚𝐾𝑔2𝐽𝑚�𝑥̈ + �𝐾𝑡𝐾𝑚𝐾𝑔2�𝑥̇ = �𝑟𝐾𝑡𝐾𝑔�𝑉            (1) 

In the equation above

𝑽 is the input voltage (volts) 

: 

𝒎𝒄 is the mass of the car (kilograms) 
𝒓 is the radius of the motor gear (meters) 
𝑹𝒎 is resistance of the motor windings (ohms) 
𝑲𝒕 is the motor torque constant (N*m/A) 
𝑲𝒎 is the back EMF constant (V*s/rad) 
𝑲𝒈 is the gearbox gear ratio (no units) 
𝑱𝒎 is the moment of inertia of the motor (kg*m2) 

The motor-cart system model is a second-order model, whose dynamics we now examine: 

2. Second order dynamics 

A second order linear system is described by the general differential equation of the form: 

 𝑦̈ + 2𝜉𝜔𝑛𝑦̇ + 𝜔𝑛2𝑦 = 𝑏𝑢(𝑡) (2) 

The above equation when expressed in the Laplace domain becomes: 

  𝑌(𝑠)
𝑈(𝑠)

= 𝑏
𝑠2+2𝜉𝜔𝑛𝑠+𝜔𝑛2

  (3) 

For 𝜉 ≤ 1, the above system has complex poles, which are depicted on a graph in the figure below: 
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Figure 1:  Location of a pole in terms of 𝝎𝒏 and 𝝃. 

The parameter 𝜔𝑛 is called the natural frequency and is a measure of the speed of the response of 
the second order system while 𝜉 is a measure of the damping in the system. 

For complex poles in the left half plane, we make the following important observations from the 
figure above: 

• The length of the complex vector from the origin to the pole is 𝜔𝑛 
• The sine of the angle of the vector with the positive imaginary axis equals 𝜉 i.e. sin𝜃 = 𝜉 

A typical step response for a second order system is as shown in figure below: 

 
Figure 2:  Typical step response of a control system. 

Two important performance metrics for second order systems are their rise time and maximum 
overshoot nω.  In terms of parameters  & ξ  they are given as: 

 𝑡𝑟 ≈
1.8
𝜔𝑛

 (5) 

 𝑀𝑝 = 𝑒−𝜋𝜉/�1−𝜉2 (6) 

 

NOTE:  
In order to get faster response (small 𝑡𝑟) and smaller overshoot (small 𝑀𝑝) we would like the 
closed loop poles to have large radial distance (leading to a large 𝜔𝑛) and large angle 𝜃 (leading to 
a higher 𝜉). 
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III. Pre-lab 

1. Position Controller Design 

We set the following performance objectives to be achieved by the feedback system for cart 
position control (step response) for step amplitude of 0.1m: 

1. Rise time 𝒕𝒓 ≤ 𝟎.𝟏𝟕 𝒔 
2. Maximum overshoot 𝑴𝒑 ≤ 𝟒% 

The objective is to design a feedback system that will help us achieve these desired performance 
specifications.  The general guidelines to proceed with the design are outlined below: 

Step 1: Plant Model 

Use your state space or transfer function representation of the system from Lab 2.  Determine 
the poles of this transfer function.  Is the plant stable? 

Step 2: Design parameters 

Using the given desired performance objectives and equations (5) and (6), come up with desired 
values of 𝜔𝑛 and 𝜉 (these are ranges).  

Step 3: Proportional Controller 

The first controller that we will try is a proportional controller 𝐾.  Feel free to use your Simulink 
diagram from last lab, but please include it again in this lab report.  Vary the value of 𝐾 over the 
range 10-50.  Put 4-6 of these plots superimposed on each other in your report. 

• As 𝐾 increases, what happens to the rise time and overshoot? 
• With just a P controller, can the desired performance specifications be achieved?  

Find the smallest integer 𝐾 value for which at least the rise time performance specification is 
met.  Plot the result for this 𝐾 and show what specifications it meets. 

The above observations can also be made from the root locus plot.  Plot the root locus for the 
plant transfer function and answer the following: 

• For complex poles of the closed loop transfer function, as 𝐾 increases what happens to 
the radial distance and the angle 𝜃? 

• Going back to Figure 1 and equations (5) and (6), what does this mean will happen to 𝜉 
and 𝜔𝑛 as 𝐾 increases? 

Note that this is not the desired behavior we stated in the enclosed note above. 

Step 4: PD Controller 

In order to meet the design constraints, we will need derivative action which will help “apply the 
brakes earlier.” 

In order to reduce the overshoot we use derivative action in conjunction with proportional 
action.  Its form is as follows: 

 𝑘(𝑡) = 𝑘𝑃�𝑥𝑟𝑒𝑓 − 𝑥� + 𝑘𝐷�𝑥̇𝑟𝑒𝑓 − 𝑥̇� = 𝑘𝑃𝑒(𝑡) + 𝑘𝐷𝑒̇(𝑡) (7) 

Observe that a PD controller introduces a zero in the plant transfer function at 𝑠 = −𝑘𝑃/𝑘𝐷.  
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MATLAB does not allow you to put a pure zero.  Why is introducing a pure zero a bad idea?  
Instead, we will introduce a pole/zero pair with the pole so far away that it hardly affects the 
rest of the system dynamics.  We will arbitrarily set the pole at 𝑠 = −200 by making the 
denominator of the controller 0.005𝑠 + 1. 

Now put the plant dynamics equation from Step 1 in unity feedback with this new PD controller 
and obtain the transfer function from 𝒙𝒓𝒆𝒇 to 𝒙. 

For further analysis we assume that we will place the zero at 𝑠 = −15.  This location of the zero 
can be found through design techniques which will be covered in subsequent labs.  This changes 
the form of the PD controller numerator to 𝐾(𝑠 + 15).  Plot the root locus for this transfer 
function of the “modified” plant which includes the controller (zoom in towards the origin).  By 
comparing this root locus with the one plotted in Step 3 make the following observations: 

• A left half plane zero tends to pull the root locus towards it. 
• There exists a portion of the root locus which has the following properties: 

i. Has complex closed loop poles and  
ii. 𝜔𝑛 and 𝜉 both increase as 𝐾 increases 

This is what we desire as stated in the enclosed note above. 

Determine a small 𝐾 value from this root locus

Note:  For this task, you will find two things handy: 1) You can specify gain values to plot on your 
root locus (see help rlocus).  2) Once you plot your root locus, the Data Cursor (Tools → Data 
Cursor) will display the gain (𝐾), damping (𝜉), and frequency (𝜔𝑛).  You can drag this cursor 
across all the plotted points until you find a 𝐾 value that meets the parameters you solved for in 
Step 2. 

 for which the performance specifications are 
met and then use this value to determine initial values of 𝑘𝑃 and 𝑘𝐷 for the controller. 

Now create two Simulink block diagrams to simulate the cart in feedback with a PD controller: 

1)  The zero is set at s = -15, so controller zero is of the form 𝐾(𝑠 + 15). 
2)  The more general PD controller of the form 𝑘𝐷𝑠 + 𝑘𝑃. 

First verify that your chosen value of 𝐾 meets the design specifications.  Why is there a 
discrepancy in rise time and overshoot values between the root locus plot and simulation? 
(Hint:  see help rlocus and compare system architecture)  Then increase 𝐾 by some regular 
interval and plot on the same graph.  Then do the same with 𝑘𝐷 on the other diagram (doesn’t 
have to be the same interval). 

• As 𝐾 and 𝑘𝐷 increase, what happens to the rise time and overshoot? (make sure trends 
are evident on the plots) 

IV. Lab 

1. Simulink Model for Experiment 
Replace the plant in your simulation model with the actual physical plant model (using QuaRC 
components).  
Note: for this lab, please set the saturation limits for the voltage input as 8 (V) and -8 (V). Save the 
data (workspace variables) in the experiments for Post-Lab use. 
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2. Proportional Control 

Experiment with the proportional controller on the hardware by trying out various gain values and 
observe the variation of rise time and overshoot.  Provide the 𝐾 value and plot for the following 
system responses:  1) that is as close to meeting both criteria at the same time as you can get it, and 
2) that meets the rise time criteria but ignores the overshoot. 

3. PD Control 

Now implement the PD controller from Step 4 of the pre-lab that satisfies the design constraints in 
theory.  It is your choice which controller to use (𝐾(𝑠 + 15) or 𝑘𝐷𝑠 + 𝑘𝑃).  When you run it on the 
hardware, are the desired performance specifications met?  Include a plot of your hardware 
response. 

If the constraints are not met, then do an “intelligent” tuning of the gain values until the required 
specifications are met.  By now you should know three different tuning methods: modifying 𝑘𝑃, 𝐾, 
and 𝑘𝐷 as well as the general trends when you change each.  Show a plot of your final run and show 
that it meets the design specifications.  Don’t forget to report your final controller values. 

The lab instructions for operation of the hardware remain the same as for Lab 2. 

Note: Please show the lab GSI your results for each controller you designed (in IV-2 and IV-3). 

4. Extra Credit (1 pt each) 

Using your TUNED PD controller from part 2, what is the performance like for the following input 
signals?  MAKE SURE YOUR END TIME IS FINITE AND ≤ 10 (in case something goes wrong). 

• Pulse generator (50% pulse width, amplitude ≤ 0.06m, period ≥ 3 sec) 
• Sine wave (amplitude ≤ 0.08m, frequency ≤ 1 Hz) 
• Saw/Triangle wave (amplitude ≤ 0.04m, frequency ≤ 0.5 Hz) 
• Exponentially-DECAYING  sine wave (initial amplitude ≤ 0.12m, pick a reasonable time 

constant and frequency so that the decay is evident, but not too sudden or gradual) 

Include your modified Simulink/QuaRC models as well as plots of the input signal and the actual 
hardware output (superimposed) for at least 2 periods. 

V. Post-Lab 

1. Proportional Control 
Plot your simulation results together with your hardware responses for the case that meet the rise 
time criteria. Use the K value that you found in the lab hardware experiments. What is the steady 
state error for each case? Can you observe any difference between the simulation and hardware 
response? Explain that. Can you improve the hardware steady state performance by designing 
another controller? How? 
 

2. PD Control 
Plot your hardware responses of Proportional control (the one that meets the rise time criteria) and 
PD control (the one that meets both criteria) together. What is overshoot percentage for each case? 
Why are we able to tune the PD controller to perform better than just P control?  
 
Find the pole locations in the root locus using the K (or 𝑘𝐷,𝑘𝑃) values you found for these two cases. 
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Compute the overshoot and rise time from the root locus using Equations (5) and (6). Recall the 
observations you made from the root locus in the prelab. Do the hardware experimental results 
match your observations? 
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