Similarity transforms App E.13: $\mathbf{x}=P \overline{\mathbf{x}}$.
Inverted pendulum

$$
\begin{equation*}
m l^{2} \ddot{\theta}-m g l \sin \theta=T \tag{1}
\end{equation*}
$$

Linearized transfer function:

$$
\begin{equation*}
\frac{\Theta(s)}{U(s)}=\frac{1}{s^{2}-g / l}=\frac{1}{(s+\Omega)(s-\Omega)}= \tag{2}
\end{equation*}
$$

In state space form with compensator $D(s)=\frac{U(s)}{U_{1}(s)}=\frac{s-\hat{\Omega}}{s}$:

$$
\begin{equation*}
\dot{u}(t)=\dot{u}_{1}(t)-\hat{\Omega} u_{1}(t) \tag{3}
\end{equation*}
$$

By integration of eqn(3) we get

$$
\begin{equation*}
u(t)=u_{1}(t)-\hat{\Omega} \int_{0}^{t} u_{1}(\tau) d \tau \tag{4}
\end{equation*}
$$

Introduce state variable $x_{3}=\hat{\Omega} \int u_{1}$, then $\dot{x_{3}}=\hat{\Omega} u_{1}(t)$ and $u=u_{1}-x_{3}$. Thus state space representation with compensation is:

$$
\dot{\mathbf{x}}=A \mathbf{x}+B u=\left[\begin{array}{c}
\dot{x_{1}} \tag{5}\\
\dot{x_{2}} \\
\dot{x_{3}}
\end{array}\right]=\left[\begin{array}{ccc}
0 & 1 & 0 \\
\Omega^{2} & 0 & -1 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+\left[\begin{array}{c}
0 \\
1 \\
\hat{\Omega}
\end{array}\right] u_{1}(t)
$$

Eigenvalues $|\lambda I-A|=0$:

$$
\left|\begin{array}{ccc}
\lambda & -1 & 0 \tag{6}\\
-\Omega^{2} & \lambda & 1 \\
0 & 0 & \lambda
\end{array}\right|=\lambda\left(\lambda^{2}-\Omega^{2}\right)=0
$$

Thus eigenvalues are $\lambda_{0}=0, \lambda_{1}=\Omega$, and $\lambda_{2}=-\Omega$. and eigenvectors $(\lambda I-A) \mathbf{e}_{\mathbf{i}}=\mathbf{0}$:

$$
\mathbf{e}_{0}=\left[\begin{array}{c}
1 \tag{7}\\
0 \\
\Omega^{2}
\end{array}\right] \quad \mathbf{e}_{\mathbf{1}}=\left[\begin{array}{c}
1 \\
\Omega \\
0
\end{array}\right] \quad \mathbf{e}_{2}=\left[\begin{array}{c}
1 \\
-\Omega \\
0
\end{array}\right]
$$

To diagonalize A, let $\bar{A}=P^{-1} A P$, where

$$
P=\left[\mathbf{e}_{\mathbf{1}} \mathbf{e}_{\mathbf{2}} \mathbf{e}_{\mathbf{0}}\right]=\left[\begin{array}{ccc}
1 & 1 & 1 \tag{8}\\
\Omega & -\Omega & 0 \\
0 & 0 & \Omega^{2}
\end{array}\right] \quad \text { and } \mathrm{P}^{-1}=\frac{1}{2 \Omega^{2}}\left[\begin{array}{ccc}
\Omega^{2} & \Omega & -1 \\
\Omega^{2} & -\Omega & -1 \\
0 & 0 & 2
\end{array}\right]
$$

Thus

$$
\bar{A}=P^{-1} A P=\frac{1}{2 \Omega^{2}}\left[\begin{array}{ccc}
\Omega^{2} & \Omega & -1 \tag{9}\\
\Omega^{2} & -\Omega & -1 \\
0 & 0 & 2
\end{array}\right]\left[\begin{array}{ccc}
0 & 1 & 0 \\
\Omega^{2} & 0 & -1 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{ccc}
1 & 1 & 1 \\
\Omega & -\Omega & 0 \\
0 & 0 & \Omega^{2}
\end{array}\right]=\left[\begin{array}{ccc}
\Omega & 0 & 0 \\
0 & -\Omega & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Output

$$
\mathbf{y}=\mathbf{C x}=\mathbf{C P} \overline{\mathbf{x}}=\left[\begin{array}{lll}
\mathbf{1} & 0 & 0
\end{array}\right]\left[\begin{array}{ccc}
1 & 1 & 1 \tag{10}\\
\Omega & -\Omega & 0 \\
0 & 0 & \Omega^{2}
\end{array}\right] \overline{\mathbf{x}}=\left[\begin{array}{lll}
\mathbf{1} & \mathbf{1} & \mathbf{1}
\end{array}\right] \overline{\mathbf{x}}
$$

A variation of the modal canonical form with $\mathbf{y}=\mathbf{C x}$ is shown here:

