Practice Midterm EE123

Prof. Kannan Ramchandran

Spring 2006

The midterm has FIVE(5) Questions. Please make sure that there are FIFTEEN (8 blank) pages following this page.

- DO NOT open the exam until instructed to do so.
- This is a closed book exam.
- You are allowed ONE side of a 8.5x11 inch sheet.
- You have 120 minutes to finish this exam.
- Box your final answers.
- Partial marks will not be awarded to answers that have no proper reasoning.
- Answers arrived at with the aid of programmable calculators, which do not show insight into the problem will not fetch any credit.
- Remember to write your name and SID on the top right corner of every sheet of paper.
- You may use the empty pages to do your work.

NAME: _____

SID: _____

• Problem 1 (25 points)

- I.) For each of the following systems, determine if the system is linear, causal, shiftinvariant, and BIBO stable. Note that x[n] and y[n] denote the system input and output respectively. Indicate "Y" for Yes, "N" for No, and "X" for "cannot be determined due to insufficient information."
 - I.a.) (4 points) $y[n] = cos(\sqrt{|n|})x[n]$. ______ Linear _____ Causal _____ Shift-Invariant _____ Stable

I.b.) (4 points) The response of the system to an input of $\delta[n-1]$ is $(0.5)^n u[n]$.

_____ Linear _____ Causal _____ Shift-Invariant _____ Stable

II.) (2 points) If an LSI system has a unit pulse response h[n] given and 0.1 < |h[n]| < 0.2 for all n, is the system BIBO stable?

_____ Stable _____ Cannot be determined

III.) (4 points) The sequence $x[n] = \{\dots, 0, -1, 2, 2, 0, 0, \dots\}$, where the arrow indicates x[0] is input to an LSI system with unit pulse response $h[n] = (-1)^n [u[n+1] - u[n-2]]$. Determine the value of n for which |y[n]| is maximum, and find this maximum value.

IV.) (5 points) An LSI system with unit-pulse response h[n] has the transfer function:

$$H(z) = \frac{z^2 - 16}{(z - 0.25)(z + 4)(z - 2)}$$

It is known that |h[n]| < 4 for all $n \leq -4$, but the sum $\sum_{n=-\infty}^{\infty} |h[n]|$ diverges (i.e. is not finite).

The ROC of H(z) is _____.

V.) (6 points) A system has a transfer function:

$$H(z) = \frac{(z+3)^4}{\left(z-\frac{1}{2}\right)(z+2)^2}$$

In the spaces below, specify all possible ROC's and indicate the properties that apply to the system associated with each ROC.

ROC	Stable	Causal	Non-causal

• Problem 2 (15 points)

I.) (7 points) The two-sided z-transform of a stable system is:

$$H(z) = \frac{1}{z^7 \left(z + \frac{1}{3}\right)^2}$$

Find h[n] for all n.

II.) (8 points) A system's input-output behavior is characterized by the equation:

$$y[n] = -y[n-6] + 2x[n] + x[n-5]$$

Assume that the system is causal (i.e. y[-1]=0). Find the unit pulse response h[n] of the system for n=0,1,5,6,10,11, and 120.

• **Problem 3** (10 points) The input to the system shown below is $x[n] = cos(\frac{3\pi}{4}n)$ for $-\infty < n < \infty$.

I.) (2 points) If the block D is removed (i.e. x[n]=w[n]), then sketch the magnitude spectrum of $Y_d(e^{j\omega})$ and give a closed form expression for y[n].

II.) (3 points) Now suppose that D is a down-sampler by a factor of 2. Sketch the magnitude spectrum $W_d(e^{j\omega})$ of w[n] and give a closed form expression for w[n].

- III.) (3 points) Derive a closed-form expression for y[n].
- IV.) (2 points) Is the system time-invariante? Prove your answer to get credit.

• Problem 4 (25 points)

Consider the following digital processor for analog signals.

The spectra $X_a(j\Omega)$ of $x_a(t)$ and $H_d(e^{j\omega})$ are both real, and as shown below:

In all the plots, be sure to label the axes, and mark the values at the transition points.

- I.) (4 points) Find the largest T that will prevent aliasing at the sampler.
- II.) (7 points) Plot $Y_a(j\Omega)$, assuming $T = \frac{1}{40}$ seconds.

IV.) (7 points) Plot $Y_a(j\Omega)$, assuming $T = \frac{1}{20}$ seconds.

• Problem 5 (25 points)

You are assigned the task of designing a signal processing system according to the diagram below to implement a bandpass filter passing frequencies between 2kHz and 6kHz and suppressing all other frequencies. The input signal is bandlimited to 10kHz.

- 1. (5 points) What is the minimum sampling frequency required?
- II.) (8 points) For this sampling frequency, assuming the D/A is ideal, sketch the magnitude of the ideal desired response of the digital filter over the frequencies $\omega \in [-\pi, \pi]$.

III.) (12 points) You are offered a great deal on a ZOH circuit that only holds for half the sample interval and then returns to zero (see sketch below). Determine the ideal frequency response of the analog reconstruction filter $H_a(j\Omega)$ such that the the D/A reconstruction in this system is ideal. Plot the ideal magnitude response over the frequencies which must be controlled and specify any "don't care" regions of the frequency band as such.

