Practice Midterm
 EE123

Prof. Kannan Ramchandran

Spring 2006

The midterm has FIVE(5) Questions. Please make sure that there are FIFTEEN (8 blank) pages following this page.

- DO NOT open the exam until instructed to do so.
- This is a closed book exam.
- You are allowed ONE side of a 8.5 x11 inch sheet.
- You have 120 minutes to finish this exam.
- Box your final answers.
- Partial marks will not be awarded to answers that have no proper reasoning.
- Answers arrived at with the aid of programmable calculators, which do not show insight into the problem will not fetch any credit.
- Remember to write your name and SID on the top right corner of every sheet of paper.
- You may use the empty pages to do your work.

NAME: \qquad

SID: \qquad

- Problem 1 (25 points)
I.) For each of the following systems, determine if the system is linear, causal, shiftinvariant, and BIBO stable. Note that $\mathrm{x}[\mathrm{n}]$ and $\mathrm{y}[\mathrm{n}]$ denote the system input and output respecitively. Indicate "Y" for Yes, "N" for No, and "X" for "cannot be determined due to insufficient information."
I.a.) (4 points) $y[n]=\cos (\sqrt{|n|}) x[n]$.
\qquad Linear \qquad Causal \qquad Shift-Invariant \qquad Stable
I.b.) (4 points) The response of the system to an input of $\delta[n-1]$ is $(0.5)^{n} u[n]$.
\qquad Linear \qquad Causal \qquad Shift-Invariant \qquad Stable
II.) (2 points) If an LSI system has a unit pulse response $\mathrm{h}[\mathrm{n}]$ given and $0.1<|h[n]|<0.2$ for all n, is the system BIBO stable?
___ Stable ___ Unstable ___ Cannot be determined
III.) (4 points) The sequence $x[n]=\{\ldots, 0,-1,2,2,0,0, \ldots\}$, where the arrow indicates $\mathrm{x}[0]$ is input to an LSI system with unit pulse response $h[n]=(-1)^{n}[u[n+1]-u[n-2]]$. Determine the value of n for which $|y[n]|$ is maximum, and find this maximum value.

$$
n_{\max } \ldots\left[n_{\max }\right]
$$

IV.) (5 points) An LSI system with unit-pulse response $\mathrm{h}[\mathrm{n}]$ has the transfer function:

$$
H(z)=\frac{z^{2}-16}{(z-0.25)(z+4)(z-2)}
$$

It is known that $|h[n]|<4$ for all $n \leq-4$, but the sum $\sum_{n=-\infty}^{\infty}|h[n]|$ diverges (i.e. is not finite).
The ROC of $\mathrm{H}(\mathrm{z})$ is \qquad .
V.) (6 points) A system has a transfer function:

$$
H(z)=\frac{(z+3)^{4}}{\left(z-\frac{1}{2}\right)(z+2)^{2}}
$$

In the spaces below, specify all possible ROC's and indicate the properties that apply to the system associated with each ROC.

ROC	Stable	Causal	Non-causal

- Problem 2 (15 points)
I.) (7 points) The two-sided z-transform of a stable system is:

$$
H(z)=\frac{1}{z^{7}\left(z+\frac{1}{3}\right)^{2}}
$$

Find $\mathrm{h}[\mathrm{n}]$ for all n .
II.) (8 points) A system's input-output behavior is characterized by the equation:

$$
y[n]=-y[n-6]+2 x[n]+x[n-5]
$$

Assume that the system is causal (i.e. $y[-1]=0$). Find the unit pulse response $\mathrm{h}[\mathrm{n}]$ of the system for $\mathrm{n}=0,1,5,6,10,11$, and 120 .

- Problem 3 (10 points) The input to the system shown below is $x[n]=\cos \left(\frac{3 \pi}{4} n\right)$ for $-\infty<n<\infty$.

I.) (2 points) If the block D is removed (i.e. $x[n]=w[n]$), then sketch the magnitude spectrum of $Y_{d}\left(e^{j \omega}\right)$ and give a closed form expression for $\mathrm{y}[\mathrm{n}]$.

II.) (3 points) Now suppose that D is a down-sampler by a factor of 2 . Sketch the magnitude spectrum $W_{d}\left(e^{j \omega}\right)$ of $w[n]$ and give a closed form expression for $\mathrm{w}[\mathrm{n}]$.

III.) (3 points) Derive a closed-form experession for $y[n]$.
IV.) (2 points) Is the system time-invariante? Prove your answer to get credit.
- Problem 4 (25 points)

Consider the following digital processor for analog signals.

The spectra $X_{a}(j \Omega)$ of $x_{a}(t)$ and $H_{d}\left(e^{j \omega}\right)$ are both real, and as shown below:

In all the plots, be sure to label the axes, and mark the values at the transition points.
I.) (4 points) Find the largest T that will prevent aliasing at the sampler.
II.) (7 points) Plot $Y_{a}(j \Omega)$, assuming $T=\frac{1}{40}$ seconds.

III.) (7 points) Plot $X_{d}\left(e^{j \omega}\right)$, assuming $T=\frac{1}{20}$ seconds.

IV.) (7 points) Plot $Y_{a}(j \Omega)$, assuming $T=\frac{1}{20}$ seconds.

- Problem 5 (25 points)

You are assigned the task of designing a signal processing system according to the diagram below to implement a bandpass filter passing frequencies between 2 kHz and 6 kHz and suppressing all other frequencies. The input signal is bandlimited to 10 kHz .

1. (5 points) What is the minimum sampling frequency required?
II.) (8 points) For this sampling frequency, assuming the D / A is ideal, sketch the magnitude of the ideal desired response of the digital filter over the frequencies $\omega \in[-\pi, \pi]$.

III.) (12 points) You are offered a great deal on a ZOH circuit that only holds for half the sample interval and then returns to zero (see sketch below). Determine the ideal frequency response of the analog reconstruction filter $H_{a}(j \Omega)$ such that the the D / A reconstruction in this system is ideal. Plot the ideal magnitude response over the frequencies which must be controlled and specify any "don't care" regions of the frequency band y_{n} as such.

