
EECS 123 Digital Signal Processing University of California, Berkeley: Fall 2007
Gastpar November 7, 2007

Exam 2

Last name First name SID

• You have 1 hour and 45 minutes to complete this exam.

• The exam is closed-book and closed-notes; calculators, computing and communication
devices are not permitted.

• No form of collaboration between the students is allowed. If you are caught cheating, you
may fail the course and face disciplinary consequences.

• However, four single-sided US letter pages of handwritten and not photocopied notes are
allowed.

• Additionally, you receive Tables 2.1, 2.2, 2.3, 3.1, 3.2, 8.1, 8.2 from the class textbook.

• If we can’t read it, we can’t grade it.

• We can only give partial credit if you write out your derivations and reasoning in detail.

• You may use the back of the pages of the exam if you need more space.

*** Good Luck! ***

Problem Points earned out of

Problem 1 20

Problem 2 20

Problem 3 20

Problem 4 25

Problem 5 15

Total 100
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Partial Credit.

Partial credit will be given only if there is sufficient information in your work. In general, a good
way to show that you understand what’s going on is for example to provide plots, sketches, and
formulas for intermediate signals. That way, if you make an error somewhere along the way, we
can trace it and evaluate whether or not you understood the basics of the problem.

Useful Formulae.

• For the continuous-time box function,

b(t) =

{

1, −T ≤ t ≤ T
0, otherwise

(1)

the (continuous-time) Fourier transform is given by

B(jΩ) =
2 sin(ΩT )

Ω
. (2)

• tan(π/4) = 1
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Problem 1 (Phase Properties.) 20 Points

Given the phase characteristics of a generalized linear phase FIR filter Hd(e
jω) shown below,

answer the following questions. Include brief explanations to get credit.

π
2

π
2

π
2

π
2

π π ω

jω
dH  (e    )

(a) (6 pts) Is this a symmetric (i.e., Type-I or Type-II) or an anti-symmetric (i.e., Type-III or
Type-IV) filter? Why?

Anti-symmetric , because it has a ±π/2 phase shift.

(b) (8 pts) Can the filter length be determined from the given information? If yes, what is the
length? If not, why not?

Yes , the slope of the phase is -1. So, the delay is 1. Then M = 2 and N = 3

(c) (6 pts) The filter magnitude response has a DC gain of 1. True or False? Why?

False , an anti-symmetric even-order FIR filter must have a DC gain of zero.
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Problem 2 (Filter Design.) 20 Points

(a) (12 pts) A continuous-time filter is given by Ha(s) = 2

2+s . We want to use this as a prototype

filter to design a discrete-time filter via the bilinear transform with a suppression of 1/
√

2 at
ωc = π/2. (Note that the filter has a gain of 1 at frequency zero.) Give H(z) explicitly.

One way to solve this problem is follows. First determine the continuous frequency with atten-
uation 1/

√
2 .

|Ha(jΩc)| =
∣

∣

∣

∣

2

2 + jΩc

∣

∣

∣

∣

=
1√
2

⇒ Ωc = 2

Since Ωc = 2

Td
tan(ωc/2) this means that we want Td = 1, and thus

H(z) =
2

2 + 21−z−1

1+z−1

=
1

2
(1 + z−1)

Another approach is to solve for H(z) in terms of Td , and then to solve for the value of Td

such that |H(ejω/2)| = 1/
√

2 .

(b) (8 pts) Sketch |H(ejω)| for the filter designed in part (a) over the interval 0 ≤ ω ≤ π .

H(ejω) =
1

2
e−jω/2(ejω/2 + e−jω/2) = e−jω/2 cos(ω/2)

0 0.2 0.4 0.6 0.8 1
0

0.5

1
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Problem 3 (Filter Design.) 20 Points

(a) (5 pts) We want to approximate the lowpass filter in Figure 1 with the optimal minimax
(Parks-McClellan) Type-I filter h(n) . Just like in class, the band 0 ≤ ω ≤ ωp is the desired
passband, and the band ωs ≤ ω ≤ π is the desired stopband. In Figure 1, provide a sketch the
form of H(ejω) when h(n) has length 3. Recall that the amplitude of a Type-I filter has the

form A(ejω) =
∑M/2

k=0
ak cos(kω). Assume that ωs = π − ωp .

1

0 ω
p

ω
s π

e
1

e
2

e
3

e
4

Figure 1:

(b) (10 pts) Determine the filter h(n). Hint: If you find it easier, you may start by assuming
that ωp = π/3 and thus, ωs = 2π/3.

Since the filter has length 3, we know that A(w) = a0 + a1cos(ω) . There must be alternations
at the boundaries e2 and e3 . Also, because cos(ω) is strictly decreasing on the interval [0, π]
it is clear that an alternation point must occur at e1 or e4 . Given the symmetry of the problem
and the fact that A(w) is just a shifted and stretched cosine, we see that the error at e1 and
e4 must be the same, that is they are both alternation points. Using this reasoning, we have
a0 = 1/2 . Equating the error at e1 and e2 gives

a0 + a1 cos(0)− 1 = 1− a0 − a1 cos(ωp) ⇒ a1 =
1

1 + cos(ωp)
.

And so the filter is given by
h = [a1/2, a0, a1/2]

Note that if wp = π/3 , then h = [1/3, 1/2, 1/3] .
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(c) (5 pts) What is the largest value of ωp such that the maximum error is δ ≤ 1/6 ?

The maximum error is

δ = a0 + a1 − 1 =
1

1 + cos(ωp)
− 1

2

Solving this leads to

δ ≤ 1/6 ⇒ cos(ωp) ≥ 1/2 ⇒ ωp ≤ π/3
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Problem 4 (Multirate System.) 25 Points

��
��

- - - - -- 8 ↑ ZOH

Ideal D/A

x[n] Hd

y[n]
Hi Ha y(t)

w[n] z(t)

Hd(e
jω) =

{

1, |ω| ≤ π
2

0, else
Hi(e

jω) =

{

8, |ω| ≤ π
8

0, else

The ZOH operates at interval T but produces pulses of width T
4

, i.e.

g(t) =

{

1, 0 ≤ t ≤ T
4

0, else,

and the output is z(t) =
∑

∞

n=−∞
w[n]g(t− nT ).

(a) (9 pts) For X(ejω) pictured, sketch W (ejω) . Label the magnitude and bandwidth.
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(b) (7 pts) For the same X(ejω) , sketch |Z(jΩ)| for Ω = [−8π
T , 8π

T ] .

rect

(

t

T/4

)

F←→ T

4
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(

Ω
T

8

)

= 2
sin(ΩT/8)

Ω
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See the next page for a more accurate depiction of the labels
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|Z(j    )|
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(c) (7 pts) For this part, we are interested in making the dashed block (with input y[n] and
output y(t) ) an ideal D/A converter for arbitrary y[n] , i.e. ignore the effects of Hd .

What is the “cheapest”1 filter Ha(jΩ) such that between y[n] and y(t) we have an ideal D/A.
Sketch |Ha(jΩ)| and specify its value where necessary.

We start by noting that the signal y[n] used to arrive at the figure in Part (b) only occupied
half of the frequency band. In order to obtain a general ideal D-to-A converter, we must allow
for input signals y[n] that occupy the entire (digital) spectrum, and thus, the components of the
corresponding signal z(t) will have a width of 2 · π

8T (rather than only 2 · π
16T , as in the figure

in Part (b)). However, the crucial point is that the spectrum Z(jΩ) is zero for all frequencies
π
8T < |Ω| < 15π

8T , and we can exploit this fact in the design of the filter Ha(jΩ). Specifically,
that filter must be the inverse of G(jΩ) inside the band 0 ≤ |Ω| ≤ π

8T , but can be anything
in the band π

8T < |Ω| < 15π
8T . We can exploit this degree of freedom and use a “cheaper” filter,

such as the one drawn in the figure below.
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Ω [π/T]

(d) (2 pts) Explain (in words) the advantages and disadvantages of this D/A converter design
over a direct implementation (as we have discussed it in class).

The advantage is that we no longer need an ideal continuous-time filter in order to implement
an ideal digital-to-analog conversion. Rather, we can simply use a relaxed filter such as the
one found in Part (c). That filter is cheaper to implement. The disadvantage is that we need
more digital logic. (However, for the past few decades, digital has become cheaper and faster
according to Moore’s law (check it out on Wikipedia if you have never heard about it...), and so,
this has not been considered a real issue.) Oversampling is a trick used in many digital-analog
(and also analog-digital, as we will see very soon) conversion systems.

1the filter having the largest transition band (as we have seen in class, the smaller (i.e., steeper) the transition
band, the more filter coefficients are necessary)
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Problem 5 (Filter Bank.) 15 Points
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Figure 2: A two-channel filter bank.

For the filter bank in Figure 2, find the conditions for perfect reconstruction, i.e., the conditions
on the filters Fi(z), Gi(z),Hi(z) (for i = 0, 1) such that y[n] = x[n].

We may replace Fi(z) with the filter Fi(z
2) which occurs either before the downsampling or

after the upsampling. Either way we get

G0(z)F0(z
2)H0(z) + G1(z)F1(z

2)H1(z) = 2

and
G0(z)F0(z

2)H0)− z) + G1(z)F1(z
2)H1(−z) = 0

as the conditions for perfect reconstruction.
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