Problem Set 7

EECS123: Digital Signal Processing

Prof. Ramchandran
Spring 2008

1. Problem 4.29 from Oppenheim, Schafer, and Buck.
2. Problem 4.37 from Oppenheim, Schafer, and Buck.

Note: The sampling rate in Figure P4.37-2 should be $T=\frac{1}{6} \times 10^{-3}$.
3. Problem 4.44 from Oppenheim, Schafer, and Buck.

Note: The input in Figure P4.44-1 should be $r_{c}(t)$ instead of $x[n]$.
4. Problem 4.50 from Oppenheim, Schafer, and Buck.
5. This problem deals with the identification of complex exponentials with by using minimum number of samples. You should use the annihilation-filter method.
(a) It is known that $y_{1}[n]=a_{0} e^{j \omega_{0} n}+a_{1} e^{j \omega_{1} n}$. Using this prior information, find the unknown $a_{0}, a_{1}, \omega_{0}, \omega_{1}$ using the samples $\left\{y_{1}[n]\right\}_{0}^{3}$ stored in y1.mat.
(b) Consider another signal $y_{2}[n]$. It is known that $y_{2}[n]=\sum_{k=0}^{N-1} a_{k} e^{j \omega_{k} n}$, where the only information available about N is that $N \leq 5$. Using this information, find the unknown $\left\{a_{k}, \omega_{k}\right\}_{0}^{4}$ using the samples $\left\{y_{2}[n]\right\}_{0}^{9}$ stored in y2.mat.

Note: The files y1.mat and y2.mat can be found on the course webpage. You can load the variables $\left\{y_{1}[n]\right\}_{0}^{3}$ and $\left\{y_{2}[n]\right\}_{0}^{9}$ using the command load y1.mat and load y2.mat, respectively.

Note: For factorizing at $N=2$, you can use quadratic formula. For larger values of N, plot $\left|H_{d}\left(e^{j \omega}\right)\right|$ to obtain the roots of $H_{d}\left(e^{j \omega}\right)=0$.

