Problem Set 7

EECS123: Digital Signal Processing

Prof. Ramchandran Spring 2008

- 1. Problem 4.29 from Oppenheim, Schafer, and Buck.
- 2. Problem 4.37 from Oppenheim, Schafer, and Buck.

Note: The sampling rate in Figure P4.37-2 should be $T = \frac{1}{6} \times 10^{-3}$.

3. Problem 4.44 from Oppenheim, Schafer, and Buck.

Note: The input in Figure P4.44-1 should be $r_c(t)$ instead of x[n].

- 4. Problem 4.50 from Oppenheim, Schafer, and Buck.
- 5. This problem deals with the identification of complex exponentials with by using minimum number of samples. You should use the annihilation-filter method.
 - (a) It is known that $y_1[n] = a_0 e^{j\omega_0 n} + a_1 e^{j\omega_1 n}$. Using this prior information, find the unknown $a_0, a_1, \omega_0, \omega_1$ using the samples $\{y_1[n]\}_0^3$ stored in y1.mat.
 - (b) Consider another signal $y_2[n]$. It is known that $y_2[n] = \sum_{k=0}^{N-1} a_k e^{j\omega_k n}$, where the only information available about N is that $N \leq 5$. Using this information, find the unknown $\{a_k, \omega_k\}_0^4$ using the samples $\{y_2[n]\}_0^9$ stored in y2.mat.

Note: The files y1.mat and y2.mat can be found on the course webpage. You can load the variables $\{y_1[n]\}_0^3$ and $\{y_2[n]\}_0^9$ using the command load y1.mat and load y2.mat, respectively.

Note: For factorizing at N = 2, you can use quadratic formula. For larger values of N, plot $|H_d(e^{j\omega})|$ to obtain the roots of $H_d(e^{j\omega}) = 0$.