Problem Set 2

EECS123: Digital Signal Processing

Prof. Ramchandran
Spring 2008

1. Find the inverse \mathcal{Z}-transform of the following:
(a) $\frac{3 z^{-3}}{\left(1-\frac{1}{4} z^{-1}\right)^{2}},|z|<1 / 4$.
(b) $\sin (z)$.
(c) $\frac{z^{7}-2}{1-z^{-7}},|z|>1$.
2. Find $y[n]=h[n] * x[n]$, using \mathcal{Z}-transforms, where:

$$
x[n]=\left\{\begin{array}{ll}
n & n \geq 0 \\
0 & n<0
\end{array} \quad h[n]= \begin{cases}(-1)^{n} & n \geq 0 \\
0 & n<0\end{cases}\right.
$$

3. Consider the signal $x[n]=\{-3,1,-2, \stackrel{\downarrow}{0}, 2,-1,3\}$ with DTFT $X\left(e^{j \omega}\right)$. The arrow denotes the $n=0$ location. The signal is zero outside. Compute the following quantities, without explicitly computing $X\left(e^{j \omega}\right)$:
(a) $X\left(e^{j 0}\right)$
(b) Give the possible values for $\angle X\left(e^{j \omega}\right)$
(c) $\int_{-\pi}^{\pi} X\left(e^{j \omega}\right) d \omega$
(d) $X\left(e^{j \pi}\right)$
(e) $\int_{-\pi}^{\pi}\left|X\left(e^{j \omega}\right)\right|^{2} d \omega$
4. Two systems with impulse responses

$$
h_{1}[n]=\frac{4}{7} 2^{n-1} u[-n]+\frac{11}{7}\left(\frac{1}{4}\right)^{n-1} u[n-1] \quad h_{2}[n]=\delta[n]-3^{n-1} u[-n]
$$

are connected in cascade. For each of the individual systems, as well as for the cascade, determine whether it is causal and/or BIBO stable.
5. The input $x[n]=2^{n}(u[n]-3 u[n-1])$ to an unknown LTI system produces the output $y[n]=$ $\left(3^{n}-2^{n}\right) u[n]$.
(a) Determine the unit-pulse (impulse) response $\{h[n]\}_{n=-\infty}^{\infty}$ of the system.
(b) Is the solution unique? What if the system is known to be unstable? What if it is causal? 6. The correlation between $x[n]$ and $y[n]$ is defined as

$$
R_{X Y}[n]=\sum_{k=-\infty}^{\infty} x^{*}[k] y[n+k] .
$$

Let the Fourier transform of $R_{X Y}[n]$ be $S_{X Y}\left(e^{j \omega}\right)$. Show that,

$$
S_{X Y}\left(e^{j \omega}\right)=X^{*}\left(e^{j \omega}\right) Y\left(e^{j \omega}\right)
$$

Further, show that $S_{X}\left(e^{j \omega}\right):=S_{X X}\left(e^{j \omega}\right)=\left|X\left(e^{j \omega}\right)\right|^{2}$.

