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Notes 08 largely plagiarized by %khc

1 Fourier Transform and Inverse Fourier Transform

We’ve seen the Fourier transform and its inverse a billion times.
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But does F�1F [x(t)] = x(t)? Let’s check it out:
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At this point in time, we use the time-honored method of interchanging the integrals without bothering to justify this
step.
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Let’s take some time to check out that inner integral.
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Warning: handwaving follows. As W !1, the frequency of the sine goes through the ceiling. This means that
if we move t � t0 � units left or right, the sine is going to give us a drastically different value, but its average value is
going to be effectively zero. So this integral will be equal to zero for all values of t� t0 not equal to zero.

Only at t � t0 = 0 do we have a nonzero value. Since the area of the sinc does not depend on frequency
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We then have:
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using the sifting integral.1

1This material was lifted from Prof. Fearing’s lecture notes from fall 1994.


