Professor Fearing EECS120/Problem Set 9 v 1.01
Fall 2016
Due at 4 pm, Fri. Nov. 4 in HW box under stairs (1st floor Cory)
Note: $\Pi(t)=u\left(t+\frac{1}{2}\right)-u\left(t-\frac{1}{2}\right)$, and $\operatorname{comb}(t)=\sum_{n=-\infty}^{\infty} \delta(t-n)$.

1. (30 pts) Lec15 OW Ch. 7, Up/Down sample handout

A sampled signal $x[n]=\frac{2 \sin (\pi n / 2)}{\pi n}$ is upsampled by 3 , low-pass filtered, and then down sampled by 2 to obtain a new signal $x_{b}[n]$ which is equivalent to the original signal sampled at 1.5 times faster sample rate. Following the handout and noting heights and widths, sketch the pairs:
$x[n] \leftrightarrow X\left(e^{j \Omega}\right), x_{p}[n] \leftrightarrow X_{p}\left(e^{j \Omega}\right), x_{u}[n] \leftrightarrow X_{u}\left(e^{j \Omega}\right), x_{d}[n] \leftrightarrow X_{d}\left(e^{j \Omega}\right)$, and $x_{b}[n] \leftrightarrow X_{b}\left(e^{j \Omega}\right)$.
Also specify height of $H\left(e^{j \Omega}\right)$ (note: should be Ω in LPF block).

2. (20 pts) Sampling and Reconstruction (OW 7.1)

In many cases of conversion from discrete to continuous time, we considered an ideal low-pass filter for reconstruction. In practice, a digital-to-analog converter, which can be modelled as a zero-order hold, is followed by a low-complexity analog filter. Consider the system shown in Fig. 2, where $x(t)=\cos (400 \pi t), T_{s 1}=\frac{1}{600}$ $\mathrm{sec}, T=T_{s}$, and $h(t)=400 \pi e^{-400 \pi t} u(t)$.
a. Sketch $x(t), x_{\delta}(t), x_{z}(t), x_{r}(t)$ (for $\left.0 \leq t \leq 6 T_{s 1}\right)$ and associated magnitude spectra. ($x_{r}(t)$ will be an approximate sketch.)
b. Numerically estimate the fraction of the power in $x_{r}(t)$ which is not at the original signal frequency of 200 Hz .
c. With upsampling, a discrete time signal can be be generated with a higher effective sampling rate (if the original signal is bandlimited to less than half the original sampling frequency). Consider now $T_{s 2}=\frac{1}{10} T_{s 1}$, and $T=T_{s 2}$. Sketch the new $x_{r 2}(t)$ and $\left|X_{r 2}(j \omega)\right|$ and numerically estimate the fraction of the power in $x_{r}(t)$ which is not at the original signal frequency of 200 Hz .

Fig. 2. Sampling and zero order hold.

3. (20 pts) DFT H.O., Up/down sample H.O.

This problem considers up and down sampling with DFT instead of DTFT. Consider a 1 kHz cosine sampled at 8 kHz for 32 samples. (Assume $x[0]=1$.)
a) Determine $X[k]$ the DFT of $x[n]$. What is the spacing of the samples in the frequency domain? For example, what frequency does $\mathrm{k}=3$ correspond to?
b) Create a new sequence $v[n]$ of length 16 by downsampling $x[n]$, and sketch $v[n]$. That is $v[n]=x[2 n]$. Determine and sketch $V[k]$ the 16 point DFT of $v[n]$. What is the new spacing of samples in the frequency domain?
c) Create a new sequence $y[n]$ of length 64 by upsampling $v[n]$. That is $y[n]=v[n / 4]$ for n a multiple of 4 and $y[n]=0$ for n otherwise. Determine $Y[k]$ the 64 point DFT of $y[n]$. What is the new spacing of samples in the frequency domain?
d) A filter $H[k]$ can be used to interpolate between values of $y[n]$ to obtain $z[n]$, that is $Z[k]=H[k] Y[k]$. Sketch $H[k], Z[k]$ and $z[n]$ the inverse DFT of $Z[k]$. What is the equivalent spacing of samples in time domain?
4. (10 pts) Region of convergence, pole/zero diagram (Lec 16,17 OW 9.2)

For each part below, $y(t)$ is the output for an LTI system with impulse response $h(t)$ and input $x(t)$. Show the pole and zero locations, and the region of convergence in the $\sigma-j \omega$ plane for each $Y(s)$, using the Laplace transform integral.
i. $x(t)=t e^{-2 t} u(t), h(t)=e^{+2 t} u(t)$
ii. $x(t)=e^{-6 t} u(t), h(t)=\sin (4 \pi t) u(t)$.

5. (20 pts) Laplace Transform Lec 17,18 OW 9.3, 9.5-9.7

For each part below, use Laplace transforms and LTI properties (tables ok) to find the output $y(t)$ for an LTI system with impulse response $h(t)$ and input $x(t)$.
i. $x(t)=e^{-t} u(t), h(t)=u(t)$.
ii. $x(t)=e^{-2 t} u(t), h(t)=e^{-3 t} u(t-1)$.
iii. $x(t)=u(t), h(t)=\cos (8 \pi t) u(t)$
iv. $x(t)=e^{-2 t} u(t)+t u(t), h(t)=\delta(t-1)+\dot{\delta}(t-0.5)$
v. $x(t)=\cos (2 \pi t) u(t), h(t)=t u(t)$.

