EE120 Fall 2016

PS7 Solutions

GSI: Phil Sandborn

$$
\begin{aligned}
& \text { (\#1 a) } x(t)=\cos (4 \pi t)=\frac{1}{2}\left(e^{j 4 \pi t}+e^{-j 4 \pi t}\right) \\
& \tilde{x}(t)=x(t) \cdot \sum_{n=-\infty}^{\infty} \delta\left(t-\frac{n}{8}\right) \\
& \text { Define } P(t)=\sum_{n=-\infty}^{\infty} \delta\left(t-\frac{n}{8}\right) \\
& \tilde{X}(j \omega)=\bar{X}(j \omega) * P(j \omega) \frac{1}{2 \pi} \\
& P(j \omega)=\frac{2 \pi}{1 / 8} \sum_{k=-\infty}^{+\infty} \delta(\omega-16 \pi k)
\end{aligned}
$$

$$
\begin{aligned}
& \tilde{Z}(j \omega) \\
& \omega=4 \pi \rightarrow \Omega=\frac{\omega}{\omega_{s}} 2 \pi=\frac{\pi}{2} \\
& \omega=16 \pi \rightarrow \Omega=\frac{\omega}{\omega_{s}} 2 \pi=2 \pi
\end{aligned}
$$

b)

$$
x[n]=\cos \left(\frac{\pi}{2} n\right)=\frac{1}{2}\left(e^{j \frac{\pi}{2} n}+e^{-j \frac{\pi}{2} n}\right)
$$

$$
e^{\Omega_{0}^{\Omega_{0 n}}} \stackrel{\text { DTFT }}{\longleftrightarrow} 2 \pi \sum_{k=-\infty}^{\infty} \delta(1 \beta-L y-2 \pi l)
$$

$$
\bar{X}\left(e^{j} \Omega\right)=\frac{1}{2} 2 \pi \sum_{l=-\infty}^{\infty} \delta\left(\Omega-\frac{\pi}{2}-2 \pi l\right)+\delta\left(\Omega+\frac{\pi}{2}-2 a l\right)
$$

$$
\mathbb{X}\left(e^{j \Omega}\right)
$$

If we let $\Omega=\frac{\omega}{16 \pi} \cdot 2 \pi=\frac{\omega}{8}$

$$
\omega=8 \Omega
$$

then $\nabla\left(e^{j \Omega}\right)=\frac{1}{8} \tilde{X}(j 8 \Omega)$ Alon.
c) We have $\xrightarrow{x(t)} \xrightarrow{\sum_{n} \delta\left(t-\frac{n}{8}\right)}$ 苂(t)$\xrightarrow{\hat{x}(t)}$
we want $r(t)$ st. $\hat{x}(t)=x(t)$

SO: choose $R(j w)$

$$
\left.\hat{\mathbb{Z}}(j \omega)\right|_{\pi} \quad \frac{\text { since } \hat{\mathbb{Z}}(j \omega)=\mathbb{Z}(j \omega),}{\hat{x}(t)=x(t)}
$$

If we choose $\angle P F$ so that we isolate the delta's @ $\pm 4 \pi$, We will have $Z(j \omega)$, scaled by 8
(D)

$$
\begin{aligned}
& \hat{x}=\tilde{x}^{*} r \\
& \tilde{x}(t)=x(t) \sum_{n=-\infty}^{\infty} \delta\left(t-\frac{n}{8}\right)=\sum_{n=-\infty}^{\infty} x\left(n^{\top} s\right) \delta\left(t-\frac{n}{8}\right) \\
& \tilde{x}(t)=\sum_{n} \cos (n T s 4 \pi) \delta\left(t-\frac{n}{8}\right) \\
& \tilde{x}(t)=\sum_{n} \cos \left(\frac{\pi}{2} n\right) \delta\left(t-\frac{n}{8}\right)
\end{aligned}
$$

$$
r(t)=\frac{1}{8} \frac{\sin (8 \pi t)}{\pi t}
$$

convolution of $x(t)$ with $r(t)$: place $\operatorname{sincs}, r(t)$; @each delta and add:

$$
\begin{aligned}
& \hat{x}\left(t=\frac{1}{10}\right)=\operatorname{arca}(\tilde{x}(0)) r\left(\frac{1}{10}\right)+\operatorname{arca}\left(\tilde{x}\left(\frac{1}{4}\right)\right) r\left(\frac{1}{10}-\frac{1}{4}\right) \\
& +\cdots \\
& \hat{x}\left(t=\frac{1}{10}\right)=\sum_{n=-\infty}^{\infty} \operatorname{arca}\left(\tilde{x}\left(\frac{n}{8}\right)\right) r\left(t-\frac{n}{8}\right)
\end{aligned}
$$

(id) contd:

$$
\begin{aligned}
\hat{x}\left(t=\frac{1}{10}\right) & \approx \frac{1}{8} \frac{\sin \left(8 \pi \frac{1}{16}\right)}{\pi \frac{1}{16}}-\frac{1}{8} \frac{\sin \left(8 \pi\left(\frac{1}{16}-\frac{1}{4}\right)\right)}{\pi\left(\frac{1}{10}-\frac{1}{4}\right)} \\
& -\frac{1}{8} \frac{\sin \left(8 \pi\left(\frac{1}{16}+\frac{1}{4}\right)\right)}{\pi\left(\frac{1}{10}+\frac{1}{4}\right)}+\frac{\frac{1}{8} \sin \left(8 \pi\left(\frac{1}{10}-\frac{1}{2}\right)\right)}{\pi\left(\frac{1}{10}-\frac{1}{2}\right)} \\
& +\frac{1}{8} \frac{\sin \left(8 \pi\left(\frac{1}{16}+\frac{1}{2}\right)\right)}{\pi\left(\left(\frac{1}{10}\right)+\frac{1}{2}\right)}+\cdots
\end{aligned}
$$

Truncated series i \uparrow

$$
\begin{aligned}
& \hat{x}\left(\frac{1}{16}\right) \approx 0.7013 \\
& \hat{x}\left(\frac{1}{10}\right)= \cos \left(4 \pi \frac{1}{10}\right)=\cos \frac{\pi}{4}=\frac{\sqrt{2}}{2} \\
& \frac{\sqrt{2}}{2} \sim 0.707, \text { close }
\end{aligned}
$$

to our approximate value
thi>sum simplifies:

$$
\begin{aligned}
& \hat{x}\left(t=\frac{1}{10}\right)=\frac{1}{8 \pi}\left(\frac{\sin \left(\frac{\pi}{2}\right)}{1 / 16}-\frac{\sin \left(\frac{\pi}{2}\right)}{-3 / 16}\right. \\
&-\frac{\sin \left(\frac{\pi}{2}\right)}{5 / 16}+\frac{\sin \left(\frac{\pi}{2}\right)}{-7 / 16} \\
&+\frac{\sin (\pi / 2)}{9 / 16}+\cdots \\
& \begin{aligned}
& \hat{x}\left(t=\frac{1}{16}\right)= \frac{2}{\pi} \\
&\left(1+\frac{1}{3}-\frac{1}{5}-\frac{1}{7}\right. \\
&+\frac{1}{9}+\frac{1}{11}-\frac{1}{13}-\frac{1}{15} \\
&+\cdots)
\end{aligned}
\end{aligned}
$$

Interesting to note: this sum can be Written: $\frac{2}{\pi}\left(1+\sum_{n=1}^{\infty} \frac{(-1)^{n}(-2)}{\left(16 n^{2}-1\right)}\right)=\hat{x}\left(\frac{1}{16}\right)$ evaluation out to 7 terms yields-a result with less than 0.1% error!
\#2

$$
\begin{aligned}
& x(t)= \cos (2 \pi \cdot 500 t) \\
& x[n]= x\left[n T_{5}\right)=\cos (1000 \pi(200 e-6) n) \\
& x[n]=\cos \left(\frac{\pi}{5} n\right)=\frac{1}{2}\left(e^{j \frac{\pi}{5} n}+e^{-j \frac{\pi}{5} n}\right) \\
& N-1
\end{aligned}
$$

$$
x[n]=\frac{1}{N} \sum_{k=0}^{N-1} \bar{X}[k] e^{-2+\frac{k n}{N}}
$$

$$
x[n]=\frac{1}{100} \sum_{k 00}^{99} X[k] e^{j \frac{2 \pi k n}{i 00}}
$$

frequency spacing is related to total time for original signal:

$$
\Delta \omega=\frac{2 \pi}{100 T_{\mathrm{s}}}=\frac{2 \pi}{20 \mathrm{~ms}}=2 \pi(50 \mathrm{~Hz}
$$

So: $k=10$ corresponds to $10.50 \mathrm{~Hz}=\frac{500 \mathrm{~Hz}}{k=10}$ 500 Hz corasponds to $(2 \pi .500) \mathrm{rad} / \mathrm{s}$

$$
=1000 \pi \frac{\mathrm{rad}}{\mathrm{~s}}
$$

3 i)

$\frac{2 \pi}{15}=4 \pi$

3 i)

$\left.3_{i j}\right)$

$\mathbb{X}_{\omega}(j \omega) \quad \frac{4 \times \pi}{2 \pi}=2$

$$
\begin{gathered}
X[k]=\frac{T_{0}}{2 \pi} \text { Area }\left(X^{\prime}\left(j k \frac{2 \pi}{T_{0}}\right)\right) \\
T_{0}=8 \\
\nabla[k]=\frac{4}{\pi} \text { Area }\left(\nabla^{\prime}\left(j k \frac{\pi}{4}\right)\right) \\
\frac{4}{\pi} \cdot \pi=4
\end{gathered}
$$

iii)

3 iii)

$$
\begin{aligned}
X^{\prime}[k]= & \frac{T_{0}}{2 \pi} \operatorname{area}\left(\bar{X}^{\prime}\left(j k \frac{2 \pi}{T_{0}}\right)\right) \\
= & \frac{4}{\pi} \operatorname{area}\left(\bar{X}^{\prime}\left(j k \frac{\pi}{4}\right)\right) \\
& 2 \cdot \frac{4}{\pi}=\frac{8}{\pi}
\end{aligned}
$$

iv)

$\left.\begin{array}{l}3 \\ i v\end{array}\right)$

3
Magnitude for part iV)

$$
\begin{aligned}
& Z_{\omega}(j \omega)=\frac{1}{2}\left(\frac{2 \sin \left(4\left(\omega-\frac{\pi}{2}\right)\right)}{\left(\omega-\frac{\pi}{2}\right)} e^{-j\left(\omega-\frac{\pi}{2}\right)}+\frac{2 \sin \left(4\left(\omega+\frac{\pi}{2}\right)\right)}{\left(\omega+\frac{\pi}{2}\right)} e^{-j\left(\omega+\frac{\pi}{2}\right)}\right) \\
& 2 Z_{\omega}(j \omega)=e^{-j \omega\left(\frac{2 \sin \left(4\left(\omega-\frac{\pi}{2}\right)\right)}{\left(\omega-\frac{\pi}{2}\right)} e^{j \frac{\pi}{2}}+\frac{2 \sin (4(\omega+\pi / 2))}{\left(\omega+\frac{\pi}{2}\right)} e^{-j \pi / 2}\right)}
\end{aligned}
$$

$$
2 Z_{\omega}(j \omega)=e^{-j \omega} j\left(\frac{2 \sin \left(4\left(\omega-\frac{\pi}{2}\right)\right)}{\omega-\frac{\pi}{2}}-\frac{2 \sin \left(4\left(\omega+\frac{\pi}{2}\right)\right)}{\omega+\frac{\pi}{2}}\right)
$$

$$
\left|I_{\omega}(j \omega)\right|=\frac{1}{2}\left|\frac{2 \sin \left(4\left(\omega-\frac{\pi}{2}\right)\right)}{\omega-\pi / 2}-\frac{2 \sin \left(4\left(\omega+\frac{\pi}{2}\right)\right)}{\omega+\pi / 2}\right|
$$

$$
e^{-j \omega} e^{j \frac{\pi}{2}}=e^{j\left(-\omega+\frac{\pi}{\partial}\right)}
$$

Phase for part iv)

$$
\begin{aligned}
& X_{\omega}(j \omega)=\frac{e^{j(T / 2-\omega)}}{2}\left(\sin c_{1}(\omega)-\sin c_{2}(\omega)\right) . \\
& \bar{X}_{\delta}(j \omega)=\frac{1}{2 \pi} Z_{\omega}(j \omega) * \frac{2 \pi}{T_{s}} \sum_{k} \delta\left(\omega-\frac{2 \pi k}{T_{s}}\right) \\
& X_{\delta}(j \omega)=\sum_{k} 2 X_{\omega}(j \omega) * \delta\left(\omega-\frac{2 \pi k}{T_{5}}\right) \\
& =2 \sum_{k} \mathbb{X}_{w}\left(j\left(\omega-\frac{2 \pi k}{T_{s}}\right)\right)=2 \sum_{k} \mathbb{X}_{w}(j(\omega-4 \pi k)) \\
& \alpha_{2} e^{\partial\left(\frac{\pi}{2}-\omega\right)}\left(\frac{\sin c_{1}(\omega)-\sin c_{2}(\omega)}{2}\right) \\
& +e^{j\left(\frac{r}{2}-\omega+4 \pi\right)}\left(\frac{\left.\sin c_{1}(\omega)^{4 / \pi}-\sin c_{2}(n)-4 \pi\right)}{2}\right.
\end{aligned}
$$

phase for each copy is changed by a mount $4 \pi \rightarrow$ this means phase for $\bar{X}_{\delta}(j \omega)$ is the same for $\bar{X}_{w}(j \omega)$.

Problem 4

For this problem, we have a window between 0 seconds and 1 second. The window has a CTFT as shown below:

$$
W(j \omega)=\frac{2 \sin \left(\frac{\omega}{2}\right)}{\omega} e^{-\frac{j \omega}{2}}
$$

Note that the phase is linear, but with phase jumps each time $\frac{2 \sin \left(\frac{\omega}{2}\right)}{\omega}$ changes sign. The signal has frequency $2 \pi 9.5 \mathrm{rad} / \mathrm{s}$, so this window is shifted to the left and right by $2 \pi 9.5 \mathrm{rad} / \mathrm{s}$ and summed in complex value.

When $x_{w}(t)$ is sampled, we make the CTFT periodic:

These are pairs of sinc functions centered at $\frac{2 \pi}{T_{s}}=2 \pi 128 \mathrm{rad} / \mathrm{s}$ in ω. Next, we sample this periodic function in frequency, with a period of $\frac{2 \pi}{T_{0}}=2 \pi \mathrm{rad} / \mathrm{s}$.

(Note that I have normalized the ω axis in the above plot by π to make the even multiples of π stand out from the odd multiples of π)

Effect of window length: Since the sincs are centered on odd multiples of π, you can see that we are no longer sampling zeros of the sinc, but the center of each side-lobe. In general these values will be complex, so you can see that at each lobe the phase is non-zero. The residual energy around the actual frequency in the DFT will be as a result of the fact that there are a non-integer number of periods in the original signal that we measured.

Effect of window time shift: The complex value of the sampled CTFT comes from the fact that we had a time shift in the original window. Note that if the window had been centered at $t=0$, the sampled CTFT would have been real-valued.

Interpreting the real and imaginary part of the DFT: The phase of the DFT can be seen from taking the arctangent of imaginary part over real part:

$$
\angle X[k]=\operatorname{atan}\left(\frac{\operatorname{Im}\{X[k]\}}{\operatorname{Re}\{X[k]\}}\right)
$$

The imaginary part looks like a tangent function over k, so taking the arctangent will give a linear phase angle, which is consistent with our plot of phase above.

